Data Service Infrastructure for the Social Sciences and Humanities
			

	

[image:]

Data Service Infrastructure for the Social Sciences and Humanities

EC FP7
Grant Agreement Number: 283646

Deliverable Report

Deliverable: D5.6
Deliverable Name: DASISH Web Annotation (DWAN) framework
Deadline: M36
Nature:

Responsible: Daan Broeder, MPG-TLA
Work Package Leader: Daan Broeder, MPG-TLA

Contributing Partners and Editors: Valentina Ascuitti (KCL), Daan Broeder (MPG-TLA), Stuart Dunn (KCL), Twan Goosen (MPG-TLA), Indrek Jentson (University of Tartu), Kees-Jan van de Looi (MPG-TLA), Olof Olsson (UGOT), Stephanie Roth (UGOT), Olha Shkaravska (MPG-TLA), Menzo Windhower (MPG-TLA).
	
	 	

[Skriv text]	[Skriv text]	[Skriv text]

www.dasish.eu		[image: fp7]

www.dasish.eu	GA no. 283646
Table of Contents
2.	Executive Summary	1
3.	Introduction to DWAN framework	2
3.1	Motivation	2
3.2	Architecture	2
3.3	User scenario’s	3
4.	Annotation Tools	4
4.1	Sate of the art on September 2012	4
4.2	Developments after September 2012. PundIt	7
5.	DASISH Web Annotator (DWAN)	7
5.1	Framework architecture	8
5.2	DWAN’s Model and its connection to Open Annotation Model	8
5.3	DWAN Backend	10
Architecture	10
Database and Database Access Objects	10
REST Application Programming Interface	11
5.4	DWAN frontend(s)	17
Wired-Marker based frontend	17
Frontend for ELAN	21
5.5	Testing Procedure	22
6.	Conclusions and Outlook	23
6.1	Tool’s features	23
6.2	Potential front-ends for DWAN.	24
7.	APPENDIX	33
7.1	Schema	33
7.2	Example XMLs	40

[bookmark: _Toc321908457][bookmark: _Toc249071741][bookmark: _Toc265847849][bookmark: _Toc272486135]Executive Summary
The availability of digital archives and other research data via the internet presents new chances for collaboration. Indeed, equipped with a special software researchers from different institutions, countries, or backgrounds can now work together via the network. Such collaboration can take the form of annotating the data, and sharing these annotations using an annotation infrastructure. As stated in the task 5.6 description, researchers need to be able to store the results of collaborative intellectual work either as an annotation of a single fragment or in the form of typed relations between a number of fragments.

The aim of this document is to give a specification of a framework for annotating web-documents developed according to task 5.6 plan. By an annotation we mean a remark over a fragment(s) of a document(s).

From the technical point of view the proposed framework consists of the server part and possibly multiple clients. Developed within DASISH project DWAN tool consists of the server part (the “back-end”) and the client (the “front-end”), which is a significantly adjusted open-source web-annotation tool “Wired Marker”. The core of the server part is a Data Base where annotations and information about corresponding annotated sources are stored together with cached representations of sources. Archiving cached representations in the Data Base is relevant when annotated documents are dynamically changed pages like news sites or wiki-pages under construction.
The client exchanges data with the server by sending REST requests to the server. Client-request bodies and server's responds are presented as XML files. The client is able to accept and send XML structures that obey a pre-defined XML schema. The schema mirrors a data model that has been designed to represent the main data structures, which are involved in constructing annotations.
[bookmark: _Toc272486136] Introduction to DWAN framework
[bookmark: _Toc272486137]Motivation
In the last decades, we have witnessed large amounts of data moving to digital archives. These archives have been connected to the Internet, spreading the content through the research community. The availability of such data presents new chances for collaboration. To bring this collaborative environment to a next, higher level, the requirement is to develop a set of tools that allows groups of researchers from different institutions, countries, or backgrounds to work together. Such collaboration can take the form of annotating the data, and sharing these annotations using an annotation infrastructure.

By an annotation we mean a remark over a fragment(s) of a document(s). For instance it can be a text note stating that a certain sentence in a web-document contradicts another sentence in the same document. This is an example of an annotation with two targets where a target is a sentence. Annotatable documents include, for instance, web-pages or web-documents generated by linguistic software, e.g. EAF-files, created by ELAN .
[bookmark: _Toc272486138]Architecture
DWAN framework assumes a server part, called the “back-end”, and possibly multiple clients, called "front-ends". Typically a client is developed specifically for a particular sort(s) of web-documents, whereas the server is not specific and treats requests of all clients in the same way. The core of the server part is a Data Base where annotations and information about corresponding annotated sources are stored together with cached representations of sources. A cached representation is a copy, e.g. a screenshot, of a source. Storing cached representations allows to retrieve the copy of an annotated document when the actual web-document under the source's URI has been updated so that localizing the annotation in it becomes difficult or even impossible. It may happen when the corresponding fragment has been significantly changed or disappeared.

A client exchanges data with the server by sending REST requests to the server. Client-request bodies and server's responds are presented as XML files. A client must be able to accept and send XML structures that obey DWAN XML schema. Then the server and the client will be able to understand each other. The schema is a part of the server-side software. The schema mirrors a data model that has been designed to represent the main data structures, which are involved in constructing annotations, and relations between these structures.
[bookmark: _Toc272486139]User scenario’s
With the current DWAN tool one can perform the following user scenario’s:

1) Getting an annotation whose web-page page has been updated.

The user logs in, sees the list of annotations, chooses the one (s)he wants to see on the corresponding web-page. (S)he clicks on the annotation in the list, tries a few times to reload the page, but the annotation does not appear. The front-end cannot resolve the annotated fragment, possibly because the page has been updated and the fragment has changed its position or has disappeared at all.

The user asks then the front-end to get the remote cache and gets the cached representation of the annotation and the page. Indeed, it can be seen that the page has been updated.

This use case works well for the current DWAN and has been successfully presented at LREC's demo. The wiki-page of "Right Sector" has been used. This is a block of right and extreme-right groups in Ukraine, and due to the "unstable situation" in the country this page is updated very often. You can try to get the annotations and their cached representations via the current DWAN yourself.

2) Making a group of users that can update an annotation.

A user posts an annotation via DWAN's frontend, with all DWAN's logged in-users becoming automatically the readers of the annotation, who can read but not update annotations. However, (s)he makes some of the users also "writers" of the annotation, who can update annotation’s text.

This feature is not implementable in wired-marker, therefore I need to add a separate jsp page, with a form through which the client will send the request on updating the writer's list. The redirection to this page can be done via wired-marker DWAN frontend (to be implemented). See https://github.com/DASISH/dwan-backend/issues/9 and
 https://github.com/DASISH/dwan-client-wiredmarker/issues/22 .

3) Making a "notebook" by adding the user's subfolder-color to the existing default list of local subfolders ("markers"). For instance, I have created a purple marker-subfolder,

where I collect all the annotations about the family of Picasso, from various web-pages.

Unfortunately, it is all to see only on the client where these annotations are created. While the backend does save the information about the color with which they are marked

(the criterion to place all them in one folder), one the other client these color information is lost. All of them are placed under light-yellowish color under the folder

“incoming". Hopefully this can be fixed in the frontend. See: https://github.com/DASISH/dwan-client-wiredmarker/issues/16

4) An annotation on an annotation. A user makes an annotation and then someone else wants to make an annotation on this annotation. For instance, I went to Reykjavik and made an annotation on the Reykjavik’s page. Then later, knowing the http-address of the annotation I placed another annotation on top of it: "I have done it during LREC".

This feature can be used e.g. in remote discussions.

The current front-end is not able to present the annotations on xml's properly (as Olof has suggested), but they do exist in a good shape on the backend. See https://github.com/DASISH/dwan-client-wiredmarker/issues/18. If the Goteborg team have problems with fixing it I could add a jsp page for "advanced users", where an annotation on an annotation can be made or obtained. https://github.com/DASISH/dwan-backend/issues/10

[bookmark: _Toc272486140]Annotation Tools
[bookmark: _Toc272486141]Sate of the art on September 2012
Before development of DWAN began, more than 40 available annotation tools had been investigated to see if they could be and to which extend they could be used as a prototype tool for task 5.6. Besides correspondence of functionality of a software to DASISH purposes it had to be up-to-date an open source software, which includes possibility to change its code. Moreover, a tool had to be platform-independent. There was not that much annotation software satisfying these demands available by September 2012, or there was no enough information that allowed to draw conclusion about a tool. Below there is a table that sums up results of the investigation.

	Tool
	state
	Open software
	Backend access
	Platform (browsers)
	Functionality

	A.nnotate
	active
	commercial
	
	
	Annotating PDF, Word and other document formats on-line

	AnnotationEdit
	active
	Commercial
	
	
	Annotating video, audio

	Annotator
	active
	Open source
Java Script
	yes
	
	Library and plug-in adding annotation functionality to any web-page,
but one needs to alter its html by running script there

	Annotea,
Amaya
	Last release jan 2012
	Open source
	yes
	Different distributions Linux, Windows, MacOS
	Written in C,
annotating html-web documents

	Awesome Highlighter.
	Not active ??
Web-page broken
	
	
	Firefox bookmarklet, or add-on,
or by using the tool ‘s website
	Highlighting and clipping chunks of text on web-documents

	Blerp
	Not active ??
Web-page broken
	
	
	IE PlugIn,
Firefox addOn
	Support conversation on top
of the web-page

	BounceApp
	active
	Free app
	yes
	Via their web-page
http://www.bounceapp.com/
	Collaborative via sending “screenshots” in e.g. Facebook, Twitter and Notable

	The Commentor
	active
	Commercial with the base plan free (3 collaborators)
	
	Web-site,
you need an account
	Collaboration on visual media projects

	CritLink
	Last executable from 2000
	
	yes
		Unix
		Annotating web-documents in local networks and on the internet. Different colour means different sorts of comment: support (green, +), issue (red, -), bcomment (bule, #), query (orange, ?)

	Crocodoc
	active
	Commercial with free Standard edition
	yes
	
	Annotated PDF, word, Pwerpoint documents are saved on Crocodoc servers

	DIIGO
	active
	Commercial with free base account
	yes
	Firefox, Safari, IE
	Annotating web-pages, saved to Diigo library, Diigo account is needed

	DrawHere
	 active
	??, one needs
an account
	
	Firefox, IE bookmarklet
	Drawing on web-pages,
shareable

	ThirdVoice
	Discounted in 2001
	
	
	Browser Plug-in
	Commenting web-sites,
anyone could write anything; a lot of criticism from the web-page owners

	Wired Marker
	active
	Creative commons
	yes
	FireFox extension
	Highlighting and putting text notes on the fragments of web-documents

	Fleck
	Tool of 2006,
Inactive?
their site does not exist any more
	
	
	
	

	http://delicious.com/
	active
	Need an account
	no
	Bookmarklet
	

	http://evernote.com/
	active
	Need an account,
premium is commercial
	no
	Server, storage of the documents
	With “skitch” : annotating pdf and images, not web-pages

	http://webmarginalia.net/
	active
	Open source
Java Script
	yes
	Firefox, Safari, Chrome, IE,
For Moodle and Open Journal system
	Highlighting html

	http://www.yandell-lab.org/software/mwas.html
	active
	Need an account
	no
	
	Annotating genomes

	TrailFire
	Last mentioned in 2007
	
	
	Firefox, IE
	Annotating (notes) webpages,
categrozing annotated web-pages,
sharing

	REddIT
	active
	Need an account
	no
	server
	Social networking
and
news website

	ReframeIT
	obviously not available any more, only light-weight demo on website, add-ons outdated, integration info missing on official website
	
	
	
	

	Scrible
	under development: free public beta version available
	premium, paid edition under development, not yet available,
license:
no modifications allowed
	
	
	

	SharedCopy
	State uncertain. According to http://en.wikipedia.org/wiki/Web_annotation: Development has stopped. Observe: copyright date of official website: 2012
	
	
	
	

	ShiftSpace
	Development has stopped.
	
	
	
	

	Skim
	active
	BDS license
	
	OS X
	PDF reader and node taker

	WebNotes
	active
	platinum /pro/lite version/,
account is needed,
modification under permission
	
	
	Adding notes to PDF and web-pages

	JKN
	new?
	
	
	
	http://info.jkn.com/firefox.htm , Light version with available features: web page annotation, organize and search notes, share notes via email, twitter, and permalink or any other similar url found from annotation evaluation lists - they didn't work at all!

	Keeppy
	
	
	
	Server
	http://www.keeppy.com/, a social network, relevant for our purposes

	Loomp
	new?
	No license information, short technical information and easy access for downloading is missing.
	
	
	One Click Annotator, a WYSIWYG Web editor for enriching content with RDFa annotations,
http://loomp.org/index.php/home.html,

	MarkITUp
	new?
	MIT/GPL licence, based on former jTagEditor,
	
	needs jQuery 1.4.2 Javascript library
	Toolbox. Will never be WYSIWYG editor. http://markitup.jaysalvat.com/home/,

	NotateIT
	new?
	not open sources
	
	only for Windows, seems not to be compliant with other platforms
	http://www.notateit.com/

	WebKlipper
	new?
	commercial
	
	
	

At the end the decision was made to select Wired Marker as a base tool for DASISH web-annotator client and to develop own DAISH server part which together with the database of annotations is to be hosted at TLA MPI Nijmegen.
Wired-Marker is an open-source GNU-licensed Firefox plugin, thus satisfying two necessary conditions to be selected as a DASISH prototype: non-commerciality (with the possibility to change the code) and platform-independence.
Its functionality, though limited, still goes in line with DASISH purposes: a text fragment of an arbitrary web-document can be marked by a selected colour and a text remark (an annotation body) can be put on it. Next, once an annotation is made it is saved in the centralised data base and can be read by other users, thus Wired-Marker is a collaborative tool. Moreover, an annotation has a title, also editable by the user. This allows to present nicely the list of all annotations.
Wired-Marker has three drawbacks that cannot be fixed in a reasonable amount of time. First, it does not allow to annotate multiple-target annotations that means that a text note can be put exactly on one text fragment. This does not allow, for instance to annotate simultaneously two fragments, by making a remark that they contradict each other. The second drawback is that an annotation read from the database is loosing its original colour while interpreted by the front-end. Third, images and their fragments cannot be annotated by Wired-Marker properly. To be precise, you can make a remark
On the whole image, considered as a separate web-document.

Another tool, called PundIt can do more than Wired-Marker, but unfortunately by the time when DASISH task 5.6 team had to make a decision, it was not yet available and it got Open Source license after development of DWAN had been started.

[bookmark: _Toc272486142]Developments after September 2012. PundIt
PundIt allows annotate images and their fragments, collect annotations into notebooks. In fact, Notebooks can be viewed as an extended version of colours (markers) of Wired Marker. A notebook can be read exactly in the form intended by its creator.
PundIt has a feature which in some cases may be considered as an inconvenience. While creating an annotation, a user must think in terms of a triple: Object-Predicate-Subject, for instance “Karl Marks” (subject) “talks about” (predicate) “Kapital” (object). “Karl Marks” denote not only a piece of text but it is rather a wider notion, an item. Under this item one can collect text and piece fragments representing Karl Marks on the web-pages.
ReframeIt has appeared as a Firefox add-on for commenting web-pages and sharing it via Facebook, Twitter, Blogger, FriendFeed, Wordpress, RSS, HTML, e-mails.

[bookmark: _Toc272486143]DASISH Web Annotator (DWAN)

[bookmark: _Toc272486144]Framework architecture
DWAN is a framework for software annotation clients working together with a single back end consisting of a database and a Representational State Transfer (REST) web service implemented in Java. It allows annotating any web-accessible content, linking data, creating relations, or providing feedback. Its novelty is also in the fact that the created content and sources can be stored in a digital archive, which guarantees their sustainability and persistence. The digital storage for annotations and related resources is provided by TLA-MPI[footnoteRef:1]. [1: The Language Archive, Max Planck Institute for Psycholinguistics, http://tla.mpi.nl/]

DWAN is also especially meant to cater for specific linguistic tools that through their use of linguistic data formats can annotate specific linguistic items such as lexical items, annotation tags etc.

[bookmark: _Ref383179833]Figure 1: The DWAN Framework

[bookmark: _Toc272486145]DWAN’s Model
and its connection to Open Annotation Model

Class Annotation is the core of the model. The relations Annotation - Target, Target - Source, Target - Cached Representation closely follow the emerging Open Annotations (OA) standard. An annotation, i.e. an inhabitant of the class Annotation, is a structure that contains necessary information about user's annotation. In particular it contains the annotation's identifier, the reference to the owner and the time of creation. An owner is either the user (or more generally, a principal) who has created the annotation or a user (principal) to whom the ownership has been assigned. A principal is ether a user or a group of users. Creating user's groups is the matter of the future work.
Besides the owner, an annotation has readers and writers. As one can expect, a reader is a user that can read the annotation, and a writer can also add changes to it. Thus, a registered user can be related to an annotation by means of one of two access modes (reader, writer), or do not have an access to the annotation at all.
[bookmark: _GoBack]An annotation can have one or more targets. A target (i.e. an inhabitant of the "Target" class) contains the reference to the web-document (a source) and the precise description of the document's fragment which is actually annotated. Moreover, a target may refer to one or more cached representations of the relevant parts of the source with the precise descriptions of the annotated fragments for each representation.
Semantics of an annotation is given in its body. In the implementation a body can be an arbitrary text or an xml text. In both cases a precise mime-type must be given by a client. For instance, a body can be a plain text which describes a relation (like contradiction) between two fragments of some web-document. In this case the body should contain references to the targets that represent these two fragments.
Annotations can be gathered in notebooks.

[image:]

[bookmark: _Toc272486146]DWAN Backend

[bookmark: _Toc272486147]Architecture

[image:]
[bookmark: _Toc272486148]Database and Database Access Objects
A relational PostgreSQL database provides a storage for all the core resources: annotations, targets, cached representations, users and notebooks. The database contains 5 main tables; each of them stores a corresponding type of resource. A column in a table represents an attribute in the corresponding resource class, see the model schema. For instance, any resource class has an attribute URI through which a client accesses an instance of the resource. URI has the form //, e.g. "https:/dasish.mpi.nl/api/annotations/e3c834f0-34c4-11e3-aa6e-0800200c9a66". Each of 5 tables has its column "external identifier". An external identifier is a UUID string generated by the server when a resource, e.g. an annotation, is added to the database. Also, it is worth to note that annotation bodies are stored in the table "annotation" in the column "body".
Further, there is a number of join tables representing the relations between the resources, which are described as relations between the classes in the model schema. These relations induce a hierarchy between the resources. Indeed, any of the relations can be abstracted to "refers" so that we have that a "user" refers to an "annotation" or a "notebook", an "annotation" refers to a "target" and a "target" refers to a "cached representation". As one can see, cached representations have the lowest position in this hierarchy. This hierarchy induces a "cascading" mechanism of adding and deleting resources in the database. For instance, removal of an annotation from the database triggers the removal of its targets, except the ones to which other annotations refer to. In its turn, removal of the targets triggers removal of all the corresponding cached representations unless some other targets refer to a cached representation under consideration.
"Spring Database Access Objects" (DAO's) are used to programmatically access the data in the database. The DAO mechanism allows to form and call SQL database commands like SELECT, or UPDATE, or INSERT, or DELETE from "java" methods. Signatures for basic manipulations over resources (retrieving, updating, adding and deleting) are given in the corresponding DAO java interface. For instance, AnnotationDao.java interface lists the signatures of all necessary basic operations over the table "annotation" and the joint tables "annotation-targets" and "annotations-principals-permissions". By a basic operation we mean an operation which demands a single SQL command SELECT, or UPDATE, or INSERT, or DELETE. The interfaces themselves do not perform any actual work, they just list necessary java methods together with their input and output types. Any interface must be implemented by a corresponding java class. For instance, "add annotation" is implemented in JdbcAnnotationDao.java class as a single java method. As one expects, this method forms and calls an INSERT command for the table "annotation".
Due to the presence of join tables there must be a mechanism that takes care about right sequencing of basic operations. For instance, consider a complete procedure of deleting an annotation. The annotation's internal database identifier occurs in three joint tables "annotations-targets", "annotations-principals-permissions", "notebooks-annotations". If the annotation record is deleted from the table "annotation" before the corresponding rows in the joint tables are removed, then the joint tables have references to the non-existing annotation (via its internal identifier). The database signalises an integrity error. To prevent such errors we have introduced a special java class "DBIntegrityServiceImpl.java" which calls the methods from the DAO implementations in the correct order. Moreover it triggers cascading of the operations when necessary. For instance, complete deleting of an annotation amount to purging the joint tables first, then deleting the corresponding record in the "annotation" table, and then triggering removal of the annotation's non-used targets.
The complete list of the DAO java classes and their methods together with short comments can be found in the java-doc files.

[bookmark: _Toc272486149]REST Application Programming Interface

The server and a client communicate with each other by means of REST Application Programming Interface (API for short). REST API is a collection of requests which the server must recognise and respond in an appropriate way. Each request is an URL-like string starting with the server's location specified by the type of requested resource and its identifier when applicable. By resources we mean users (principals), notebooks, annotations, targets and cached representations.
GET requests are used to retrieve information about resources stored in the Data Base. For GET requests the string often ends with the identifier of a requested resource. This is a so called request parameter. For instance, it can be the identifier of an annotation or the identifier of a cached representation. Passing a user identifier as a parameter is not expected, because the active principal is known from the session via an identification procedure (e.g. "Shibboleth"). A PUT (resp. DELETE) request is used to update (resp. delete) the resource whose identifier is given as a request parameter. Only “owner” has DELETE rights. POST is performed when a client wants to create a new annotation. Some information necessary to fulfill a PUT or POST request is not given as a request parameter, but given serialized in a request body. For instance, to submit an annotation a client needs to fill in the requests body with the XML-element corresponding to class "Annotation". All the information necessary to create an annotation should be placed in the corresponding nodes of the XML-element. For instance, the link(s) to an annotated web-document(s) must be given in the POST's body.
If a POST (PUT) request is sent then in the case of success the server returns the serialized information about the added (resp. updated) resource together with a standard HTTP response code. In the case of failure the corresponding error message and error status are returned, e. g. 401 Unauthorized access if the principal is not logged in (except for the log-in service). Below all requests are listed and the corresponding server responses are described in more detail.

	notation
	meaning

	aid
	annotation identifier

	cid
	cached-representation identifier

	datetime
	date and time, including time zone, as defined in http://www.w3.org/TR/xmlschema-2/#dateTime

	nid
	notebook identifier

	prefix
	the prefix of a namespace

	tid
	target identifier

	text
	some text

	prid
	principal's id

	URI
	URI, as defined in http://tools.ietf.org/html/rfc3986

	Principal
	a user (person) or a group of users

Web-documents exist in time, that is different versions of the document may exist under the same link in different moments of time. As stated earlier, we will rely on caching of versions of annotated sources, see Unresolvable targets in Scenario for an example. For now in this document the descriptions of the requests often refer to the corresponding descriptions in the scenarios (see appendix, TODO).
Principal realm

	Resource
	Description
	Return xml type

	GET api/authentication/login
	redirects to the login page, if the principal is not logged-in, or messages otherwise
	String message

	GET api/authentication/principal
	logged-in principal
	Principal

	GET api/principals/prid
	principal with the given prid
	Principal

	GET api/principals/prid/current
	true if the prid is logged-in; false otherwise
	CurrenPrincipalInfo

	GET api/principals/info?email=user@mail.com
	See example section (TODO: ref)
	Principal

	GET api/principals/admin
	The string with the name and the e-mail of DWAN admin
	String

[bookmark: user-content-annotations]Annotations
api/annotations

	Resource
	Description
	Return xml type

	GET api/annotations?link=URI&
text=text&access=[["read","write"]]&ns=prefix:ns&owner=prid&after=datetime1&before=datetime2
	returns a filtered by the request parameters list of info-s of the the annotations: for URI, to which the inlogged principal has "read” (resp.”write”) access and the bodies of which contain the text text. Moreover, these annotations are created between datetime1 and datetime2. If the parameter “link” is omitted, then considers all annotated objects to which prid has “read”/”write” access. The default datetime1is 01 Jan 1970, 00:00. The default datetime2 is today.
	AnnotationInfoList

	POST api/annotations
	Adds a new annotation by picking up its XML-serialization from the request body.
	Envelope AnnotationResponseBody

api/annotations/aid
The table below describes the behavior of the request pair (method, URI) when principal prid has authorized access to aid. Here “authorized access “ means that prid has “read” access for GET-methods, and “write” access for PUT body methods. To change permissions of the annotation the principal must be the "owner" of the annotation. If the access is not authorised, then 401 is return.

	Resource
	Description
	Return xml type

	GET api/annotations/aid
	returns the annotation that has this aid
	Annotation

	GET api/annotations/aid/targets
	returns the list of the tid-s of all the targets of aid
	ReferenceList

	DELETE api/annotations/aid
	removes aid from the database, together with all its targets to which no other annotation refers
	0 or 1, and an http status code, no xml

	PUT api/annotations/aid
	updates the annotation with aid. For instance, it is used when prid wants to correct typos in the annotation body AND change annotated fragments. (See PUT api/annotations/aid/body for correcting body only.) The serialized representation of the updated annotation is given in the request body. The server returns an "envelope" containing the updated annotation and the list of actions.
	Envelope AnnotationResponseBody

	PUT api/annotations/aid/body
	updates the body of the annotation aid. Used e.g. for correcting typos in the text part. The server returns the "envelope", see above.
	Envelope AnnotationResponseBody

	GET api/annotations/aid/permissions
	See getting permission lists in the section Examples.
	PermissionList

	PUT api/annotations/aid/permissions
	see updating permission lists in the section Examples.
	envelope PermissionResponseBody

	PUT api/annotations/aid/permissions/prid
	see adding/updating access in the section Examples .
	http status code

Targets
A target represents a specific fragment of a specific version of an annotatable source. For instance, if a source is a web-page that was lastly updated on 12.12.2012 at 14:00 in Berlin then target contains the link to the page and the time stamp for 14:00 (CET) on 12.12.2012. These date and time may differ from the date and time of creating annotations on this source. Some sources contains explicit version strings like "Version 2.1". Such version string is represented as an attribute of a target as well.
api/targets

	Resource
	Description
	Return xml type

	GET api/targets/tid
	returns the target with a given id
	Target

	GET api/targets/tid/versions
	returns the lists of the URIs of all the “sibling”-versions of the tid, that is targets related to the same source (the same link)
	ReferenceList

	POST api/targets/tid/fragment/
fragmentdescriptorstring/cached
	a 2-part POST, with the request body consisting of a description CachedRepresentationInfo class, and a single file (multiple files must be archived)
	CachedRepresentationInfo

	DELETE api/targets/tid/cached/cid
	removes connection tid-cids. The cached representation is removed from the database as well, unless there are no more references to this representation.
	status code, and string "how many rows in the junction table are removed", should be 0 or 1

api/cached
It is possible to store the cashed representation not only of the fragment precisely corresponding to annotation's target but of a larger fragment and even of the entire annotatable document. The relation between the target and its cached representation should be completed by a fragment descriptor pointing to the position of the annotated fragment in the cached representation. For instance, for a screenshot it may be an (x,y) -position of a left-upper corner of the annotated fragment and the size of a rectangular.

	Resource
	Description
	Return xml type

	GET api/cached/cid/metadata
	returns the meta-information of cid if it exists
	CachedRepresentationInfo

	GET api/cached/cid/stream
	returns the file (stream) that is the cached representation with cid if it exists
	no xml output

	GET api/cached/cid/content
	returns the image file that is the cached representation with cid if it exists
	no xml output

[bookmark: user-content-notebooks-implemented-but-n]Notebooks (implemented but not checked at all)
api/notebooks

	Resource
	Description
	Return xml type

	GET api/notebooks
	returns notebook-infos for the notebooks accessible to the current principal
	NotebookInfoList

	GET api/notebooks/owned
	returns the list of all notebooks owned by the current logged principal
	ReferenceList

	GET api/notebooks/nid/readers
	returns the list of prid who allowed to read the annotations from the notebook
	ReferenceList

	GET api/notebooks/nid/writers
	returns the list of prid that can add annotations to the notebook
	ReferenceList

	GET api/notebooks/nid/metadata
	get all metadata about a specified notebook nid, including the information if it is private or not
	Notebook

	GET api/notebooks/nid?
maximumAnnotations=limit&
startAnnotation=offset&orderby=orderby&orderingMode=[[1,0]]
	get the list of all annotations aid-s contained within a Notebook with related metadata. Parameters: nid, optional maximumAnnotations specifies the maximum number of annotations to retrieve (default -1, all annotations), optional startAnnotation specifies the starting point from which the annotations will be retrieved (default: -1, start from the first annotation), optional orderby, specifies the RDF property used to order the annotations (default: dc:created), optional orderingMode specifies if the results should be sorted using a descending order desc=1 or an ascending order desc=0 (default: 0)
	ReferenceList

	PUT /notebooks/nid
	modifies metadata of nid. The new notebook’s name must be sent in request’s body.
	Envelope NotebookResponseBody

	PUT /notebooks/nid/aid
	adds an annotation aid to the list of annotations of nid
	Envelope NotebookResponseBody

	POST api/notebooks/
	creates a new notebook. This API returns the nid of the created Notebook in response’s payload and the full URL of the notebook adding a Location header into the HTTP response. The name of the new notebook can be specified sending a specific payload
	Envelope NotebookResponseBody

	DELETE api/notebooks/nid
	delete nid. Annotations stay, they just lose connection to nid
	https status, no xml

	POST api/notebooks/nid
	creates a new annotation in nid. The content of an annotation is given in the request body. In fact this is a short cut of two actions: POST api/annotations and PUT /notebooks/nid?annotation=aid.
	Envelope NotebookResponseBody

[bookmark: _Toc272486150]DWAN frontend(s)
[bookmark: _Toc272486151]Wired-Marker based frontend
Original Wired-Marker is freeware that was developed in Japan as part of the Integrated Database Project sponsored by the Ministry of Education, Culture, Sports, Science and Technology (development code name: ScrapParty) for supporting the construction of databases. Tool’s concept and design belong BITS and Prof. Okubo.

Wired-Marker is licensed under a Creative Common license. [footnoteRef:2] [2: Add the special agreement that discards “NoDerivatves” requirement.]

DWAN Wired-Marker based front-end is a Firefox extension that can be used with Firefox versions greater than 2.0.0. One can download the tool as an xpi-file from DASISH git-hub repository, https://github.com/DASISH/dwan-client-wiredmarker/releases. More detailed description on how to install the extension can be found in the Manual at the end of this document. After installation is completed, "DASISH web-annotator" is added to the Firefox menu.

The source code is written in JavaScript and contains XUL files as well. XUL stands for XML User Interface Language, is a user interface markup language that is developed by Mozilla. XUL is implemented as an XML dialect; it allows for graphical user interfaces to be written in a similar manner to Web pages. One of the possibilities to develop Firefox add-ons such as Wired-Marker is to use FoxBeans plug-in in Netbeans IDE. Then one will work with a corresponding Netbeans project, of type Mozilla Addon.

From the user’s point of view original Wired-Marker is a highlighter that allows to mark text fragments on a web-document by different colors. This feature is present in DWAN client as well. On top of that an annotated “marked” fragment is preserved not only on the local client’s database within the extension but also sent as an xml file to the backend database where it is stored. The fragment is represented by the X-Papth link that consists of the link to the page and the fragment descriptor describing where in the original document the fragment can be found. The information about the color is represented in the fragment part as well.

Another user can view this annotation in his/her DWAN client simply by reloading the annotated page. The annotated fragment appears on the page “light-yellow” colored, and in the directory of “Incoming” annotations on the left-hand side of the browser window. Consult the manual for more detail.

Annotations in “Incoming folder” always come from the backend database and generated by another client. Annotations generated by “this” client are stored in the local extension data-base as well, and they are distributed across the subfolders (“markers” of the local folder according to their colors. Synchronization of the local and the backed-database has been implemented by DASISH developers.

As stated above, the annotations from incoming folder are displayed on the corresponding web-page by light-yellow color. The original colors, put by their authors are not displayed, but they are saved on the database and transferred encoded by the server on GET request of the client. Upgrading DWAN client so that it will interpret correctly the color, is left to the future work.[footnoteRef:3] [3: Update this part of the text if the bug is fixed.]

Another feature that has been implemented by DASISH team is a logging-in dialog. In order to access the database and therefore use DWAN and its sets of functionality (e.g. view and post annotations), one needs to log-in. DWAN offers two ways of authentication, via Shibbolleth and with a newly and specifically created user account. If user’s institution is listed as a Shibboleth Identity Provider (IP), (s)he can j use her/his institution credentials. The user chooses from the list of Identity Providers, selects, and logs in. Alternatively, can create a user account by filling up and submitting the registration form referred to at the page https://lux17.mpi.nl/ds/webannotator-basic/ .
After that the user must set up server for working with not shibboleth users. For this
One goes to DASISH Web Annotator > Settings > Server > and set the link https://lux17.mpi.nl/ds/webannotator-basic in the “User Specified” box .

When an annotation is created by the user, the client send it to the server to be saved there, together with a cached representation of the page together with annotations (by that moment). The cached representation is sent as a zipped directory for the html document, with no images for which only links are sent.[footnoteRef:4] [4: Asked Olof, if this sentence is correct..]

It is possible to annotate an image (e.g. a jpeg file) which is on a web-page. The mouse pointer must be on the image, and the rest of steps are the same as for annotation text. The title and the annotation body are assigned automatically, with the annotation body getting the name of the image file. The title and the body can be edited later.

Editing for annotated text fragments and images is done by selecting an annotation in the list in the left-hand side of the browser window . Selecting “Properties” triggers a pop-up form, altering fields and tabs in which will allow to edit the annotation body and its title.

It is not possible to annotate fragments of an image.

In the original Wired-Maker it is not possible to assign and reassign read and write access for a user, given a particular annotation. Initially all users except the creator (“owner”) are getting “read” access. The owner has “write” rights and can change the rights of other users. Additional html form is produced by the server upon the request, filling which will allow the owner to reassign the rights for a particular user or users. [footnoteRef:5] [5: TODO forOlha]

// Sum up added features
// Sum up limitations

[bookmark: _Toc272486152]Frontend for ELAN
The ELAN frontend for the DASISH DWAN (Dasish Web ANnotator) database is
being prepared in the context of the COLTIME project. ELAN is an annotation program for media files. Comments in ELAN-speak are called Annotations in DWAN-speak. Since
ELAN already had the notion of "Annotations", a different word has to be
used to avoid confusion.

Users can make annotations on "tracks" parallel to their media, called "Tiers". These annotations refer to time-wise fragments of the media.

However, there was no specific support to comment on the annotations themselves. For instance, several researchers might want to coordinate their work, or review each other's work. Sometimes the tier system of ELAN would be used creatively for this purpose. This however has several drawbacks. For example, annotations on a single tier can't overlap each
other time-wise. Multiple comments referring to the same period become cumbersome.

On the other hand, the DASISH Web Annotator database is an ideal vehicle to store these comments: it is based on comments[1] which refer to some URL, or even more specifically to some fragment of the URL by means of a fragment specifier.

To use this principle, ELAN adds a unique resource identifier to the files it processes, an URN such as urn:nl-mpi-tools-elan-eaf:59d08e6a-5cd9-4aed-8aa4-7074c270e635. This is necessary because ELAN operates on files local to a user's computer, and therefore they have no universally accessible URL.

On the other hand, once an ELAN file is imported into the TLA archive, it will have a stable URL assigned and the online viewer (ANNEX) can use that.

To refer to subsections of the media, fragment identifiers have been introduced. They can refer to a specific time period (#t=1.000/2.000), named tier (#tier=Gebruik) or even to a specific annotation (#anno=a1, using its internal ID).

Currently, there are no cached representations, since it is unclear what form they should take and how to present them to the user. Without a presentation, there is no point in creating them.

[bookmark: _Toc272486153]Testing Procedure

The Software Test Plan (STP) is designed to prescribe the scope, approach, resources, and schedule of all testing activities. The plan must identify the items to be tested, the features to be tested, the types of testing to be performed, the personnel responsible for testing, the resources and schedule required to complete testing, and the risks associated with the plan.

Testing is the process of analyzing a software item to detect the differences between existing and required conditions and to evaluate the features of the software item. Testing will be performed at several points in the life cycle as the product is constructed. Testing is a very 'dependent' activity. As a result, test planning is a continuing activity performed throughout the system development life cycle.

The scope of this testing activity includes:
● Server API for DWAN release 1.0 server side software
● DWAN release 1.0 client side software for FireFox browser
● DWAN User Guide
The scope of this testing activity will not include:
● DWAN release 1.0 server side software
● DWAN development documentation Requirements

Testing consists of several phase, each phase may or may not include testing of anyone
or more of the following aspects of the DWAN software (listed alphabetically): availability, content, functionality, performance, reliability, scalability, security, usability.

The philosophy of the testing is the agile blackbox testing with the use of the scenario testing where appropriate. Agile development recognizes that testing is not a separate phase, but an integral part of software development, along with coding. Testing and coding are done incrementally and iteratively, building up each feature until it provides enough value to release to production.

API for the server side software are tested separately. The client side software is tested manually by following some basic test scenarios. The server API is tested with several Python scripts.

All discovered software anomalies during the testing are registered in the project issue
management pages under the GitHub https://github.com/DASISH/dwanclientwiredmarker
and https://github.com/DASISH/dwanbackend.

In general, testing will only stop if the DWAN server becomes unavailable. If testing is
suspended due to the DWAN server becoming unavailable, testing will be resumed once
access to the DWAN server is reestablished. Certain individual test cases may be suspended, skipped or reduced if prerequisite tests have previously failed e.g. usability testing may be skipped if a significant number of navigational tests fail.

Testing is performed on the client side with operating system Windows 7, Windows 8, Mac OS X or Linux. For testing of the browser plugin the latest Mozilla Firefox version (29 or later) is used. For the testing of the server API the Python programming environment with the unit testing framework and the package Requests 2.3.0 https://pypi.python.org/pypi/requests/) is used.

[bookmark: _Toc272486154]Results and Outlook
[bookmark: _Toc272486155]Tool’s features
DWAN is the solution for collaborative annotation. It allows annotation of any web-accessible content, both web pages in HTML format and XML documents. With DWAN one can annotate, link data, create relations, and provide feedback. An important feature of DWAN is that created content and sources can be stored in a digital archive, which guarantees their sustainability and persistence. Moreover, the DWAN Framework allows to store a cached copy for each version of the resource, any time a new annotation is made; it is therefore possible to either view the cached copy of the resource or remap the annotation to the updated resource. Archiving all versions of the various annotations created is a crucial, as well as unique, feature of DWAN.

DWAN consists of a single backend server with a database hosted by the Max Planck Institute that ensures digital storage for all annotations and related sources and a RESTful web service implemented in Java, ready for use by potentially many clients. Different clients, with different interests, and covering different use cases, all have access to the database via a uniform service interface. A client accesses the annotation by means of methods on a REST interface available over HTTP. To call one of the server’s REST methods, the client submits a request on a URL. To access an already existing annotation, the client needs to pass the annotation’s external identifier, which has been generated by the server when the annotation has been added to the database. The REST interface also provides methods to requests all annotations on a resource accessible by a specific user. REST requests define communication between the server and a client. In order to communicate with the server, clients must satisfy certain requirements: first of all, they should be able to send and receive requests in XML format according to the DWAN Schema; then, such requests should also satisfy DWAN’s API patterns. Please refer to part B of this manual for details.

[bookmark: _Toc272486156]Potential front-ends for DWAN.
Tools that can be used with DWAN backend are listed in the following table and their usage is explained in more detail in potential user scenario’s below.

	Bookends
	Configurational; editorial
	bibliographic annotation
	Contextualization
	text
	informal
	N

	LitBlitz Literature Notes Manager
	Editorial
	bibliographic annotation
	Commenting, critical responses and stating preferenes
	text
	informal
	N

	NoodleTools
	Configurational
	bibliographic annotation
	Commenting, critical responses and stating preferenes
	text
	informal
	Y

	Projects
	Configurational
	bibliographic annotation
	Contextualization
	text
	informal
	N

	Qigga
	Configurational
	bibliographic annotation
	Contextualization
	text
	informal
	N

	Sente
	Configurational
	bibliographic annotation
	Cataloguing
	text
	informal
	N

	Greenshot
	Editorial
	image annotation
	Commenting, critical responses and stating preferenes
	images
	informal
	N

	HyperImage
	Editorial
	image annotation
	Linking
	images
	informal
	N

	NewRadial (INKE)
	Configurational
	image annotation
	Linking
	text; image
	informal
	N

	Skitch
	Configurational
	image annotation
	Commenting, critical responses and stating preferenes
	text; image
	informal
	N

	UVic Image Markup Tool
	Editorial
	image annotation
	Commenting, critical responses and stating preferences
	images
	informal
	N

	Juxta
	Configurational; editorial
	image annotation; syntax/semantic annotation
	Linking
	text
	formal
	N

	MapHub
	Editorial; configutrational
	map annotation
	Contextualization
	geospatial
	informal
	Y

	NB
	Editorial
	PDF annotation
	Commenting, critical responses and stating preferenes
	text; image
	informal
	Y

	Skim
	Editorial
	PDF annotation
	Contextualization
	text; image
	informal
	N

	iAnnotate
	Editorial
	PDF annotation
	Commenting, critical responses and stating preferences
	text; image
	informal
	N

	Advene
	Editorial
	schema definition
	Linking
	video
	informal
	Y

	Anvil
	
	schema definition
	Commenting, critical responses and stating preferenes
	video
	informal
	N

	Annotator\'s Workbench
	Editorial
	segmenting video
	Commenting, critical responses and stating preferenes
	video
	informal
	N

	CLAWS Tagger
	Editorial
	syntax/semantic annotation
	Cataloguing
	text
	formal
	N

	GATE
	Editorial
	syntax/semantic annotation
	Collaborative tagging
	text
	formal
	Y

	MMax2
	Editorial
	syntax/semantic annotation
	Commenting, critical responses and stating preferenes
	text
	informal
	N

	Melita
	Editorial; configutrational
	syntax/semantic annotation
	Contextualization
	text
	formal
	N

	Pundit
	Configurational
	syntax/semantic annotation
	Linking
	text; image
	formal
	Y

	Thinkport Annotator
	Editorial
	syntax/semantic annotation
	Commentin, critical responses and stating preferences
	text
	informal
	Y

	UAM CorpusTool
	Configurational
	syntax/semantic annotation
	Commenting, critical responses and stating preferences
	text
	formal
	Y

	Versioning Machine
	Editorial
	syntax/semantic annotation
	Commenting, critical responses and stating preferences
	text
	informal
	N

	Word Hoard
	Editorial
	syntax/semantic annotation
	Commenting, critical responses and stating preferences
	text
	formal
	Y

	WordFreak
	Editorial
	syntax/semantic annotation
	Contextualization
	text
	formal
	N

	brat rapid annotation tool
	Editorial; configutrational
	syntax/semantic annotation
	Contextualization
	text
	formal
	N

	QDA Miner - Qualitative Data Analysis Software for Qualitative Research
	Editorial; configutrational
	syntax/semantic annotation; image annotation
	Linking; cataloguing
	text; image
	informal
	N

	Name
	task type
	task sub-type
	process type
	asset type
	Formal/
informal
	

	Annotation Graph Toolkit (AGTK)
	Configurational
	time-series annotation
	Cataloguing
	text
	formal
	N

	VideoANT
	Configurational
	time-series annotation
	Linking
	video
	informal
	N

	Mediathread
	Editorial; configutrational
	web media annotation
	Linking; cataloguing
	text; image; video
	informal
	N

	Rehersal Assistant
	Editorial
	web media annotation
	Contextualization
	video; audio
	informal
	N

	Vertov
	Editorial
	web media annotation
	Commenting, critical responses and stating preferences
	text; image
	informal
	N

	A.nnotate.com
	Editorial
	web-page annotation
	Commenting, critical responses and stating preferenes
	text; image
	informal
	N

	Annozilla (Annotea on Mozilla)
	Editorial
	web-page annotation
	Commenting, critical responses and stating preferenes
	text; image
	informal
	Y

	Fleck
	Editorial
	web-page annotation
	Commenting, critical responses and stating preferenes
	text; image
	informal
	N

	NoteBook
	Editorial
	web-page annotation
	Commenting, critical responses and stating preferenes
	text; image
	informal
	N

	Project Pad
	Editorial; configutrational
	web-page annotation
	Commenting, critical responses and stating preferenes
	text; image; video; sound
	informal
	N

	SharedCopy
	Editorial
	web-page annotation
	Commenting, critical responses and stating preferenes
	text; image
	informal
	N

	Springpad
	Configurational
	web-page annotation
	Commenting, critical responses and stating preferenes; Collaborative tagging
	text; image
	informal
	Y

	Trailfire
	Configurational
	web-page annotation
	Linking
	text; image
	informal
	Y

	Pliny
	Editorial
	web-page annotation; PDF annotation
	Commenting, critical responses and stating preferenes
	text; image
	informal
	N

	Bibliopedia
	Configurational; editorial
	wiki annotation
	Contextualization
	text
	informal
	N

	FromThePage
	Editorial
	wiki annotation
	Transcription
	text
	informal
	Y

	ANNIS
	Editorial
	
	Contextualization
	text
	formal
	N

	Annotator
	Editorial
	
	Commenting, critical responses and stating preferenes
	text; image
	informal
	Y (can be stored in Annotea)

	Annotorious
	Editorial
	
	Commenting, critical responses and stating preferenes
	video
	informal
	Y (via OKF)

	Atlas.ti
	Synthetic
	
	Contextualization
	text; image
	informal
	N

User scenario 1: Bibliographic annotation

Review of tools available: LitBlitz Literature Notes Manager, NoodleTools, Projects, Oigga, Sente. All but one of these are configurational, i.e. that they tend to support the organization and ordering of database records, rather than the annotation of those records with further information.

Scenario: a user has a bibliography they have formed over five years of research, on a specific geographic area. In this case the bibliography is the archaeology of Cyprus in the Byzantine period. Each bibliographic reference is the authority for a particular spelling of a particular place-name, e.g. “Paphos” as opposed to “Pafos”. The user wishes to use their bibliographic resource to annotate place-name references in the third-party document with their bibliography. This may be viewed as ‘enhanced citation’.

Formal/informal: The annotations of the text is a formal annotation requirement, as the third party text is being annotated with pre-existing information. The annotations of the bibliography are informal, as they provide free text information on each individual item.

Asset: The asset is purely textual. Previously the researcher had kept it in a Word document on their local hard-drive but recently, as one of the outputs of a research project, they have published it online as part of an inventory, marked up in XML, of Byzantine monuments in Cyprus. It is available on a webpage as a list of publications with author, title, periodical title (if appropriate), date of publication and page reference.

Annotations take the form of links to the bibliographic records in the researcher’s database, and also the annotations they have made on the bibliographic records. The latter might include ‘is this reference up to date’ or ‘is it being cited in agreement or disagreement’.

The annotations in the bibliography should be able to link simultaneously to multiple bibliographic references.

Necessary functions:
· Highlight text, placing markers on particular publications as aides-memoire for publication they are working on. This would be whole records/paragraphs rather than individual words.
· They may also wish to Add comments in the form of scribbled notes.
· They may wish to Share selected parts of the original resource via email, Twitter, and Facebook, although email is likely to be far the most useful of these, as they will wish to share references to their bibliography with individual colleagues.
· Enhance text with links. Using records in the bibliography to annotate sections of text in a second document. This would be done by embedding hyperlinks in the second document, pointing back to the bibliography records.
· In the application therefore, the third party text is annotated twice, first with the bibliography and second with the annotations of the bibliography. Both types are displayable in hover-over boxes on the third party document.

User scenario 2: Image annotation.

Review of tools available: Greenshot, HyperImage, NewRadial (INKE), Skitch, UVic Image Markup Tool. These tools are both configurational and editorial. This reflects the need to both organize image collections with annotations, and to link comments/notes with them.

Scenario: User has downloaded a large (1000+) image collection from www.flickr.com/commons. It is themed around European cultural heritage in the nineteenth and twentieth centuries, containing primarily images of objects from museums, but also contains images documenting specific events. These could include major political events such as those connected to WW1, or scenes from everyday life and objects (see example from the University of Reading’s Museum of English Rural Life).

This scenario is applicable to scholars, but also, potentially, to museum and collections curators.

Formal/informal: Mostly, the functionalities required are informal. The main need is to support the user in providing commentaries on individual images, and to select particular parts of particular images for specific commentary on those specific parts. However, the user may also wish to construct formal lists/taxonomies of the various aspects depicted. These could include objects (e.g. teapots, statues, vases, weapons, vehicles), time periods, and locations. Asset: the assets are images, stored either locally in the user’s computer, or in a private cloud space.

Necessary functions:
· The primary function needed is to Add comments in the form of scribbled notes (text to image). Either the user will wish to tag entire images or selected parts. In the example below, they will wish to define a particular part of the image, and associate tags and/or full text comments with these. In the example given, this might include ‘steam tractor’, ‘hat’, ‘person’, and ‘building.
· The user is likely to wish to share selected parts of the original resource via email, Twitter, and Facebook. In the case of a scholar, they wish to share only by email. In the case of a curator, or public engagement professional, they may wish to share via social media, e.g. using the #AskACurator or #MusuemsWeek hashtags. To do this, they will have to Save their own annotations locally.
· It will be necessary to Track versions of annotations.
· The user will wish to Tag a whole images with keywords. This functionality is already supported by www.flickr/com/commons, so the use of the Flickr API would be more appropriate than the construction of new system.
· They should have the ability to embed bibliographic references in the annotations. They could then, for example, connect related entries from the V&A catalogue in London (http://collections.vam.ac.uk), treating each collection entry as a bibliographic entity.

User scenario 3. Web page annotation

Review of tools available: Mediathread, Rehersal Assistant, Vertov, A.nnotate.com, Annozilla (Annotea on Mozilla), Fleck, NoteBook, Project Pad, SharedCopy, Springpad, Trailfire. All but three of these tools are editorial. This reflects the fact that browser-based bookmarking and generic services such as https://delicious.com are adequate to meet most researchers’ needs for organizing collections of web pages, the need for editorial, comment-based annotation is far more acute.

Scenario: User is researching methods used in 3D reconstruction of archaeological sites and objects. They have a need to both define and add annotations to a variety of different web pages, especially results of searches using Google Images and Google Scholar. Specifically they are interested in linking data created in the Unity 3D modelling package with Geographic Information Systems (GIS) data. They therefore need to compile a profile of web resources which refer to this issue. They are leading on this task in a collaborative team, and thus need to share their annotations with colleagues remotely, and with research students. These colleagues will need to be able to add annotations as well, and formulate replies to existing annotations.

Formal/informal: this is an informal referencing requirement, as the researcher will only be adding new information in the form of annotations.

Assets: the assets are primarily text and images, but may also include video. They are not stored locally.

Examples include: Official advice from Unity (http://unity3d.com/learn/resources/talks/gis-terrain-unity),
Q&A threads (http://answers.unity3d.com/questions/17829/how-can-i-import-
gis-data-into-a-unity-project.html) and bibliography (http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5567608&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5567608).

Necessary functionalities:
· Firstly, the use will need to Save their own annotations in the form of Add comments in the form of scribbled notes (text to text and text to image).
· These are stored in a shared collaborative space. The annotations will need to contain metadata detailing the page URL and the part of the page being referred to. It will be necessary to specify start and end points, allowing the user to Highlight text and Highlight images. For this scenario, it will not be necessary to highlight parts of images.
· Each annotation will have to be able to point to multiple parts or the same web page, or to multiple web pages.
· In a shared collaborative environment, it will be necessary to Track versions of annotations, including responsibility for different versions.
· This scenario reflects the probability that collaborative annotation is likely to be of (scholarly) use only within relatively well defined groups of researchers working on a common task. The tools overview suggests that there is less demand for community-wide annotation applications.

User scenario 4: Syntactic and Semantic annotation,.
Review of tools available: CLAWS Tagger, GATE, MMax2, Melita, Pundit, Thinkport Annotator, UAM CorpusTool, Versioning Machine, Word Hoard, WordFreak, brat rapid annotation tool, QDA Miner – Qualitative (Data Analysis Software for Qualitative Research).

Text annotation, both structured (syntactic) and unstructured (semantic) is a fundamental part of the research process in most disciplines. It is by far the most common form of annotation currently carried out by humanities scholars, and supported by the current tools offering. The tools above therefore support a range of configurational and editorial tasks.

Scenario: User (a Latinist and historian) is creating a digital critical edition of Marcus Tullius Cicero’s judicial speeches. They have downloaded the fifty two surviving examples from the Perseus Digital Library (http://www.perseus.tufts.edu/hopper) and stored them locally.

Formal/informal: Informal annotations are critical here, to add context, historical allusions, biographical notes on persons mentioned and places referred to. However formal annotation methods may also be required, especially in support of automated parsing and natural language processing (NLP). However, much of this information will be already be available as TEI XML markup in the Perseus documents.

Necessary functionalities:
· A primary function is to be able to Highlight text that is relevant to a) particular arguments made by Cicero, important passages and references to important exchanges. It will also be necessary to highlight quotations which have significance in other contexts. They will also wish to highlight important general entities (see below).
· One the text is highlighted, the user will wish to Add comments in the form of scribbled notes (text to text). As well as free text, they will wish to construct annotations using their own vocaulary lists of important general entities. These will include, but not exhaustively: important personages, such as Caesar, Sextus, Pompey, contemporary events such as the formation of the First Triumvirate and the Civil, places such as Rome, Brundisium, roles such as aedile and senator, laws. Any word, phrase or passage that the user wishes to associate with these events would need to be defined and an associative term or terms selected.
· Assuming the critical edition will involve translation or all or part of the corpus, the user will need to annotate any passages where the translation is, for any reason, indirect.
· It will be essential for the user to be able to Track versions of annotations, and to be able to delete obsolete versions.
· They will need to be able to Save their own annotations.
· The user will need to be able to Modify text: Add information to text (within the text) as well as delete information (within the text) if, in their judgement, there is repetition or trantextual inaccuracy, or if abridgement is needed for any other reason. The deletion, and the text deleted, should be preserved as an annotation.
· The user will need to be able to embed links to other texts, bibliography, video and image media.

User scenario 5. Wiki based annotations.

Review of tools available: Bibliopedia, FromThePage.

The requirements for wiki based annotation are similar to those required for web page annotation. However, there is an additional requirement to capture and annotate changes made to the wiki pages over time. Both available tools have primarily editorial functions.

Scenario: User is conducting a project to capture the reception of public monuments, including the Parthenon in Athens. They will therefore need to annotate not only the main page of the wiki, but also the ‘Talk’ history of the page, and are likely, later on, to have edits/additions to make to the Wikipedia page itself. The project is therefore about using annotation to capture discussion about a contentious page, and Formal/informal: only informal annotations are relevant here.

Assets: The assets involved are text and images.

Necessary functionalities:
· UC4: Modify text: Add information to text (within the text).
· UC 5: Modify text: delete information (within the text).
· The use will need to Save their own annotations in the form of Add comments in the form of scribbled notes (text to text and text to image).
· These are stored in a shared collaborative space. The annotations will need to contain metadata detailing the wiki URL and the part of the page being referred to. It will be necessary to specify start and end points, allowing the user to Highlight text and Highlight images. For this scenario, it will not be necessary to highlight parts of images.
· Each annotation will have to be able to point to multiple parts or the same wiki page, or to multiple web pages.
· In a shared collaborative environment, it will be necessary to Track versions of annotations, including responsibility for different versions.
· To gauge discussion on the topic, there is an important requirement to be able to share selected parts of the original resource via email, Twitter, and Facebook.
[bookmark: _Toc272486157]APPENDIX
[bookmark: _Toc272486158]Schema
There are 5 sorts of resources in DASISH: CachedRepresentation, Target, Principal, Annotation, Notebook. Each of them has the corresponding xsd-type in the schema. There is no type with the name CachedRepresentation because a cached representation is a "pure" resource like an image or a text file that does not contain any meta-information about itself. The metadata of a cached presentation are defined via an instance of CachedRepresentationInfo type. Each of these 5 types has an obligatory attribute "URI" which contains DASISH identifier pointing to the location of the resource on the DASISH server. Resource-info types TargetInfo, AnnotationInfo, NotebookInfo contain reference to the corresponding resource plus the most important information about the resource. There are corresponding list-of-resource-info types: TargetInfos, AnnotationInfos, NotebookInfos. There is a number of auxiliary types as well. A commonly-used one is ResourceREF which contains the attribute "ref" of type xs:anyURI. It allows to declare elements-references and avoid mixing them with elements-resources.

<?xml version="1.1" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.dasish.eu/ns/addit"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
 xmlns:dasish="http://www.dasish.eu/ns/addit">
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2005/08/xml.xsd"/>

 <xs:complexType name="List">
 <xs:sequence/>
 </xs:complexType>

 <xs:complexType name="ReferenceList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="href" type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="CachedRepresentationInfo">
 <xs:sequence>
 <xs:element name="mimeType" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="tool" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="type" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 <xs:attribute ref="xml:id" use="required"/>
 </xs:complexType>

 <!-- used in the target -->
 <xs:complexType name="CachedRepresentationFragment">
 <xs:sequence>
 <xs:element name="fragmentString" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 </xs:complexType>

 <xs:complexType name="CachedRepresentationFragmentList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="cached" type="dasish:CachedRepresentationFragment" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="Target">
 <xs:sequence>
 <xs:element name="lastModified" type="xs:dateTime" minOccurs="1" maxOccurs="1"/>
 <xs:element name="link" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="version" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="siblingTargets" type="dasish:ReferenceList" minOccurs="1"/>
 <xs:element name="cachedRepresentatinons" type="dasish:CachedRepresentationFragmentList"
 minOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 <xs:attribute ref="xml:id" use="required"/>
 </xs:complexType>

 <xs:complexType name="TargetInfo">
 <xs:sequence>
 <xs:element name="link" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="version" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 </xs:complexType>

 <xs:complexType name="TargetInfoList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="targetInfo" type="dasish:TargetInfo" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="Principal">
 <xs:sequence>
 <xs:element name="displayName" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="eMail" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 <xs:attribute ref="xml:id" use="required"/>
 </xs:complexType>

 <xs:complexType name="CurrentPrincipalInfo">
 <xs:sequence>
 <xs:element name="currentPrincipal" type="xs:boolean" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 </xs:complexType>

 <xs:complexType name="CurrentPrincipalInfoList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="currentPrincipalInfo" type="dasish:CurrentPrincipalInfo" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:simpleType name="Access">
 <xs:restriction base="xs:string">
 <xs:enumeration value="read"/>
 <xs:enumeration value="write"/>
 <xs:enumeration value="none"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="Permission">
 <xs:attribute name="principalHref" type="xs:anyURI" use="required"/>
 <xs:attribute name="level" type="dasish:Access" use="required"/>
 </xs:complexType>

 <xs:complexType name="PermissionList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="permission" type="dasish:Permission"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="public" type="dasish:Access" use="required"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="Annotation">
 <xs:sequence>
 <xs:element name="ownerHref" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="headline" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="lastModified" type="xs:dateTime" minOccurs="1" maxOccurs="1"/>
 <xs:element name="body" type="dasish:AnnotationBody" minOccurs="1" maxOccurs="1"/>
 <xs:element name="targets" type="dasish:TargetInfoList" minOccurs="1" maxOccurs="1"/>
 <xs:element name="permissions" type="dasish:PermissionList" minOccurs="1"
 maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 <xs:attribute ref="xml:id" use="required"/>
 </xs:complexType>

 <xs:complexType name="AnnotationInfo">
 <xs:sequence>
 <xs:element name="ownerHref" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="headline" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="lastModified" type="xs:dateTime" minOccurs="1" maxOccurs="1"/>
 <xs:element name="targets" type="dasish:ReferenceList" minOccurs="1" maxOccurs="1"
 />
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 </xs:complexType>

 <xs:complexType name="AnnotationInfoList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="annotationInfo" type="dasish:AnnotationInfo" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="AnnotationBody">
 <xs:choice>
 <xs:element name="textBody">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="mimeType" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="body" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="xmlBody">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="mimeType" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:any minOccurs="1" maxOccurs="1" processContents="skip"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>

 <xs:complexType name="Notebook">
 <xs:sequence>
 <xs:element name="ownerRef" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="title" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="lastModified" type="xs:dateTime" minOccurs="1" maxOccurs="1"/>
 <xs:element name="annotations" type="dasish:ReferenceList" minOccurs="1" maxOccurs="1"/>
 <xs:element name="permissions" type="dasish:PermissionList" minOccurs="1"
 maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 <xs:attribute ref="xml:id" use="required"/>
 </xs:complexType>

 <xs:complexType name="NotebookInfo">
 <xs:sequence>
 <xs:element name="ownerHref" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="title" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="href" type="xs:anyURI" use="required"/>
 </xs:complexType>

 <xs:complexType name="NotebookInfoList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="notebookInfo" type="dasish:NotebookInfo" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!--- Envelopes -->

 <xs:simpleType name="AnnotationActionName">
 <xs:restriction base="xs:string">
 <xs:enumeration value="CREATE_CACHED_REPRESENTATION"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="PermissionActionName">
 <xs:restriction base="xs:string">
 <xs:enumeration value="PROVIDE_PRINCIPAL_INFO"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="Action">
 <xs:sequence>
 <xs:element name="object" type="xs:anyURI" minOccurs="1" maxOccurs="1"/>
 <xs:element name="message" type="xs:string" minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="ActionList">
 <xs:complexContent>
 <xs:extension base="dasish:List">
 <xs:sequence>
 <xs:element name="action" type="dasish:Action" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <!-- response envelope (not a resource, used for all response on POST/PUT requests) -->

 <!-- "envelope"-->
 <xs:complexType name="ResponseBody">
 <xs:sequence>
 <xs:choice>
 <xs:element name="annotation" type="dasish:Annotation"/>
 <xs:element name="permissions" type="dasish:PermissionList"/>
 <xs:element name="notebook" type="dasish:Notebook"/>
 </xs:choice>
 <xs:element name="actionList" type="dasish:ActionList" minOccurs="1"
 maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>

 <!-- above: consistency check is left to "schematron":
 it has to check if the list objects for CREATE_CACHED_REPRESENTATION(s) conisides with unresolved targets in the content element-annotation
 the same for permission lists
 -->

 <!-- ############ ELEMENTS ################# !-->

 <!-- complex types -->

 <xs:element name="action" type="dasish:Action"/>

 <xs:element name="actionList" type="dasish:ActionList"/>

 <xs:element name="annotation" type="dasish:Annotation"/>

 <xs:element name="annotationBody" type="dasish:AnnotationBody"/>

 <xs:element name="annotationInfo" type="dasish:AnnotationInfo"/>

 <xs:element name="annotationInfoList" type="dasish:AnnotationInfoList"/>

 <xs:element name="annotationList" type="dasish:ReferenceList"/>

 <xs:element name="cashedRepresentationInfo" type="dasish:CachedRepresentationInfo"/>

 <xs:element name="cashedRepresentationList" type="dasish:ReferenceList"/>

 <xs:element name="cachedRepresentationFragment" type="dasish:CachedRepresentationFragment"/>

 <xs:element name="cachedRepresentationFragmentList" type="dasish:CachedRepresentationFragmentList"/>

 <xs:element name="list" type="dasish:List"/>

 <xs:element name="notebook" type="dasish:Notebook"/>

 <xs:element name="notebookInfo" type="dasish:NotebookInfo"/>

 <xs:element name="notebookInfoList" type="dasish:NotebookInfoList"/>

 <xs:element name="notebookList" type="dasish:ReferenceList"/>

 <xs:element name="permissionList" type="dasish:PermissionList"/>

 <xs:element name="responseBody" type="dasish:ResponseBody"/>

 <xs:element name="target" type="dasish:Target"/>

 <xs:element name="targetInfo" type="dasish:TargetInfo"/>

 <xs:element name="targetInfoList" type="dasish:TargetInfoList"/>

 <xs:element name="targetList" type="dasish:ReferenceList"/>

 <xs:element name="principal" type="dasish:Principal"/>

 <xs:element name="currentPrincipalInfo" type="dasish:CurrentPrincipalInfo"/>

 <xs:element name="currentPrincipalInfoList" type="dasish:CurrentPrincipalInfoList"/>

 <xs:element name="principalList" type="dasish:ReferenceList"/>

 <xs:element name="referenceList" type="dasish:ReferenceList"/>

 <xs:element name="access" type="dasish:Access"/>

 <!-- Simple types -->

 <xs:element name="annotationActionName" type="dasish:AnnotationActionName"/>
 <xs:element name="permission" type="dasish:Permission"/>
 <xs:element name="permissionActionName" type="dasish:PermissionActionName"/>
</xs:schema>

[bookmark: _Toc272486159]Example XMLs
DWAN Wired-Marker Based Frontend Manual
DWAN client is based on the Wired-Marker extension for Firefox with added functionality to communicate with the DWAN backend. Such extension enables the user to create free-text annotations on fragments of webpage content. Wired-Marker, and therefore DWAN client, runs only on Firefox web browser which can be downloaded from the Mozilla website, here: http://www.mozilla.org/en-US/firefox/new/ .

It is highly recommended to make a separate FireFox profile where one installs DWAN Wired-Marker based client.

For instance, to create a Firefox profile on MAC, one can follow one of two. In either case it is recommended to watch the Terminal window output in order to trace any heavy exceptions or errors that might occur. One can create a profile via Terminal and start up Firefox with that profile by using the following commands:
macuser$ mkdir -p ~/Library/Application\ Support/Firefox/Profiles/nameofprofile
macuser$ /Applications/Firefox.app/Contents/MacOS/firefox -profile ~/Library/Application\ Support/Firefox/Profiles/nameofprofile -no-remote.

Alternatively, one can create a profile with the help of Profile Manager and start Firefox with that profile by using the following commands:
macuser$ /Applications/Firefox.app/Contents/MacOS/firefox-bin -p

Having started up a Firefox instance with the profile, drag and drop the xpi file onto the Firefox window in order to install it. Another option is to load and install the xpi file by using the Firefox menu “File - Open File” dialog.

In order to access the database and therefore use DWAN and its sets of functionality (e.g. view and post annotations), you need to log-in. DWAN offers two ways of authentication, via Shibbolleth (A) and with a newly and specifically created user account (B).

A) If your institution is listed as a Shibboleth Identity Provider (IP), then you can just use your institution credentials. Choose from the list of Identity Providers, select, and log in.

B) If your institution is not listed as a Shibboleth IP, then you can create a user account following the following steps:
1. go to https://lux17.mpi.nl/ds/webannotator-basic/
2. click on Register as a non-Shibboleth user
3. fill in the user registration form and submit it
4. press cancel
5. go to DASISH Web Annotator > Settings > Server > write this link https://lux17.mpi.nl/ds/webannotator-basic in the User Specified box > and close

[image: https://lh6.googleusercontent.com/qtOjJnAroKCF3hpsP2tz1RspngT981lg5h-DP-e4urk8YTrPunJYvuOY1PzliSl56Ti7JQiZirUITKECEbVAUnIvs_eaWFqlF3_oh7EW-1Ngq6aIDl69T3D9wFrTj-yXEg]

6. Log in using the left side Log-in box

The user’s annotations and the annotations of the other users colleagues are all listed in the Incoming folder, in the left side box. DASISH website is the default webpage. Browse the page you are interested in and where are the annotations you want to see. The full list of annotations will appear and they can be ordered by title or date. Please note, it is not possible to see the author of the annotations.

To see annotations from the other users, click on the annotation you want to see from the full list. It will appear on the webpage in light yellow.

[image: et an annotation made by your colleague]

To see the user’s own annotations, (s)he can also go to the Marker folder and click on the colourused to make the annotation.

[image:]

If one or more annotations do not appear after clicking on them and also after refreshing the page, it means that the client cannot resolve the annotated fragment. The most probable reason for this is that the webpage has been changed since it was annotated.
However, one of the main features of DWAN is that it is still possible to see the annotations even if the webpage has changed by viewing the cached representations. To do this, point the mouse to the annotation in question and right-click. In the pop-up menu select "Cached representations" and click "open remote cache" in the sub-menu. If you compare this example cached representation with the current webpage, you will be able to see the annotations.

To make an annotation, the user goes to the webpage (s)he want to annotate, selects a text fragment with the mouse, right clicks and chooses the marker colour (s)he would like to use from the menu.

[image: ake annotation 1]

Nest, one needs to select the colour by left-clicking the mouse, and fill in the fields in the pop-up text-box to make the annotation. One assigns a distinctive title to the annotation and write a clear short description in the annotation box. To save the annotation, one clicks “ok” after filling in the form in the pop-up text box and it will show on the webpage.

To update the annotation, one picks it up in the list, right clicks and selects “Properties” in the menu. The form for editing will appear where by selecting tabs “Brief Overview” or “Annotation” one can edit the title and the text body respectively.

[image:]

While it is not possible to delete other users’ annotations, the user can delete his/hers.
One finds the annotation to delete in the Local Folder, then right clicks on it and select Delete.

How to give/limit permissions to view annotations. [footnoteRef:6] [6: TO DO: to be implemented in a separate form issued by the backend.]

Users with advanced technical skills can also examine the relationship between the Backend and the Frontend directly by installing Firebug, another Firefox add-on. This is particularly useful to analyse DWAN in situations where it does not seem to behave properly. To install Firebug, go to Tools > Add-Ons > Search for Firebug and allow installation.

In cases where a clean reinstall of a Firefox add-on is needed, it is advisable to first remove the respective Firefox add-on via the Add-ons
Manager that Firefox provides (about:addons) and then delete any add-on
related directories contained within the Firefox profile directory of the
Firefox profile that is used (e.g. "DWAN" or "WiredMarker" directories).
Please note that there might be different profiles, and thus different profile folders
on your machine.

Mac OS X: ~/Library/Application Support/Firefox/Profiles/[profile folder
name]

For Windows please cf. http://kb.mozillazine.org/Profile_folder_-_Firefox.

www.dasish.eu		[image: fp7]
13
www.dasish.eu	GA no. 283646

image3.emf
OnlinetoolOnlinetoolBrowserWM extensionBrowserWM extensionDWAN DB DWAN APIWeb browser

DWAN add-onWeb-based tool

ANNEX, CMDI Browser ...

Desktop tool

ELAN...more genericmore domain specific

WWWXMLCMDIEAF...HTML...

image4.emf
OnlinetoolOnlinetoolBrowserWM extensionBrowserWM extensionDWAN DB DWAN APIWeb browser

DWAN add-onWeb-based tool

ANNEX, CMDI Browser ...

Desktop tool

ELAN...more genericmore domain specific

WWWXMLCMDIEAF...HTML...

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image1.emf

DASISH

DA S IS H

image2.png

