
TIBCO PageBus™

Developer’s Guide
Software Release 1.2
December 2007

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH EMBEDDED
OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY (OR PROVIDE LIMITED
ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE. THE EMBEDDED OR BUNDLED
SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY ANY OTHER TIBCO SOFTWARE OR FOR
ANY OTHER PURPOSE.
USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND CONDITIONS OF A
LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED SOFTWARE LICENSE
AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT, THE CLICKWRAP END USER
LICENSE AGREEMENT WHICH IS DISPLAYED DURING DOWNLOAD OR INSTALLATION OF THE
SOFTWARE (AND WHICH IS DUPLICATED IN TIBCO PAGEBUS DEVELOPER’S GUIDE) OR IF THERE IS
NO SUCH SOFTWARE LICENSE AGREEMENT OR CLICKWRAP END USER LICENSE AGREEMENT, THE
LICENSE(S) LOCATED IN THE "LICENSE" FILE(S) OF THE SOFTWARE. USE OF THIS DOCUMENT IS
SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL CONSTITUTE
ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.
This document contains confidential information that is subject to U.S. and international copyright laws and
treaties. No part of this document may be reproduced in any form without the written authorization of TIBCO
Software Inc.
TIB, TIBCO, TIBCO Adapter, Predictive Business, Information Bus, The Power of Now, TIBCO General
Interface, TIBCO General Interface Framework, TIBCO General Interface Builder, TIBCO PortalBuilder, TIBCO
PageBus, and TIBCO Ajax Message Service are either registered trademarks or trademarks of TIBCO Software
Inc. in the United States and/or other countries.
EJB, J2EE, JMS and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.
All other product and company names and marks mentioned in this document are the property of their
respective owners and are mentioned for identification purposes only.
THIS SOFTWARE MAY BE AVAILABLE ON MULTIPLE OPERATING SYSTEMS. HOWEVER, NOT ALL
OPERATING SYSTEM PLATFORMS FOR A SPECIFIC SOFTWARE VERSION ARE RELEASED AT THE SAME
TIME. PLEASE SEE THE README.TXT FILE FOR THE AVAILABILITY OF THIS SOFTWARE VERSION ON
A SPECIFIC OPERATING SYSTEM PLATFORM.
THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO SOFTWARE INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN
THIS DOCUMENT AT ANY TIME.
THE CONTENTS OF THIS DOCUMENT MAY BE MODIFIED AND/OR QUALIFIED, DIRECTLY OR
INDIRECTLY, BY OTHER DOCUMENTATION WHICH ACCOMPANIES THIS SOFTWARE, INCLUDING
BUT NOT LIMITED TO ANY RELEASE NOTES AND "READ ME" FILES.
Copyright © 2007 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

| iii
Contents

Preface . v

Related Documentation . vi
TIBCO PageBus Documentation . vi
Other TIBCO Product Documentation . vi

Typographical Conventions . vii

How to Contact TIBCO Support. viii

Chapter 1 Introduction . 1

Overview . 2

TIBCO PageBus . 4

Chapter 2 PageBus Repository . 7

Using the PageBus Repository . 8

Chapter 3 TIBCO PageBus Interface Reference . 9

Overview . 10
PageBus API . 10
Subjects . 11

PageBus.publish . 13

PageBus.subscribe . 14

PageBus.unsubscribe . 16

PageBus.version . 17

PageBus.store . 18

PageBus.query . 20
Query Result Callback . 21

Subscription Callback . 22

Chapter 4 Example Code. 25

Example Code . 26
Initialization. 26
PageBus.publish. 26
PageBus.subscribe. 26
PageBus.unsubscribe. 27
 TIBCO PageBus Developer’s Guide

iv | Contents
Subscription Callback . 27
Publishing Messages in Subscription Callback . 27
PageBus.store . 28
Subscribing to Update Notifications from PageBus.store . 28
PageBus.query . 28

Publisher Example in TIBCO General Interface . 29

Subscriber Example in TIBCO General Interface . 31

Recommended Message Structure. 33

Samples . 34

Chapter 5 Best Practices and Frequently Asked Questions . 35

Application Design Strategy . 36

PageBus Versus Raw JavaScript APIs . 37

Performance Considerations. 38
PageBus Performance. 38
Design Considerations. 38

Security and Mash-Ups. 40

Subject Naming. 41

Frequently Asked Questions. 42
How do we Troubleshoot Applications using PageBus? . 42
How do we Test Applications using PageBus? . 42
How do we Integrate PageBus with TIBCO Ajax Message Service? . 42
Can Subjects be Configured? . 42
Does PageBus Require a Portal? . 42
Does PageBus Require TIBCO General Interface?. 43

TIBCO PageBus BSD License . 45

Third Party Software License Agreements . 46
TIBCO PageBus Developer’s Guide

| v
Preface

This manual provides an introduction to TIBCO PageBus™, a publish/subscribe
message delivery hub for mash-ups and rich internet applications that simplifies
the development and extension of web applications composed of Ajax
components, including rich portlets. This manual explains the PageBus™
concepts, programmatic interfaces, and best practices that help you successfully
build composite rich internet applications (RIAs).

Topics

• Related Documentation, page vi

• Typographical Conventions, page vii

• How to Contact TIBCO Support, page viii
 TIBCO PageBus Developer’s Guide

vi | Related Documentation
Related Documentation

This section lists documentation resources you may find useful.

TIBCO PageBus Documentation
The following document forms the TIBCO PageBus documentation set:

• TIBCO PageBus Developer’s Guide Read this manual for instructions on using
the product API.

Other TIBCO Product Documentation
You may find it useful to read the documentation for the following TIBCO
products. However, this is not essential. You can use TIBCO PageBus without
these other products.

• TIBCO General Interface™ Builder software: General Interface™ Builder is a
development environment for building rich Internet applications. The object
modeling features of General Interface Builder enable developers to quickly
create reusable GUI components and assemble them into full applications or
application modules. Applications can be accessed in a web browser from a
URL, existing HTML page, or portal environment.

• TIBCO PortalBuilder® software: PortalBuilder® is a portal deployment
platform. PortalBuilder provides core services such as customization,
aggregation of content and services, personalization, presentation, security,
access control and delivery. Portal pages are created based on modular
templates, allowing maximum design flexibility and easy localization.

• TIBCO Ajax Message Service™ software: Ajax Message Service™ provides a
scalable and reliable way to push or stream real-time information to web
browsers and other applications over HTTP based on a publish/subscribe
paradigm.
TIBCO PageBus Developer’s Guide

Preface | vii
Typographical Conventions

The following typographical conventions are used in this manual.

Table 1 General Typographical Conventions

Convention Use

code font Code font identifies commands, code examples, filenames, pathnames, and
output displayed in a command window. For example:

Use MyCommand to start the foo process.

bold code

font
Bold code font is used in the following ways:

• In procedures, to indicate what a user types. For example: Type admin.

• In large code samples, to indicate the parts of the sample that are of
particular interest.

• In command syntax, to indicate the default parameter for a command. For
example, if no parameter is specified, MyCommand is enabled:
MyCommand [enable | disable]

italic font Italic font is used in the following ways:

• To indicate a document title. For example: See TIBCO BusinessWorks Concepts.

• To introduce new terms For example: A portal page may contain several
portlets. Portlets are mini-applications that run in a portal.

• To indicate a variable in a command or code syntax that you must replace.
For example: MyCommand pathname

Key
combinations

Key name separated by a plus sign indicate keys pressed simultaneously. For
example: Ctrl+C.

Key names separated by a comma and space indicate keys pressed one after the
other. For example: Esc, Ctrl+Q.

The note icon indicates information that is of special interest or importance, for
example, an additional action required only in certain circumstances.

The tip icon indicates an idea that could be useful, for example, a way to apply
the information provided in the current section to achieve a specific result.

The warning icon indicates the potential for a damaging situation, for example,
data loss or corruption if certain steps are taken or not taken.
 TIBCO PageBus Developer’s Guide

viii | How to Contact TIBCO Support
How to Contact TIBCO Support

If you are using a product that embeds TIBCO PageBus, please contact TIBCO
Support Services as follows.

• For an overview of TIBCO Support Services, and information about getting
started with TIBCO Product Support, visit this site:

http://www.tibco.com/services/support

• If you already have a valid maintenance or support contract, visit this site:

https://support.tibco.com

Entry to this site requires a user name and password. If you do not have a user
name, you can request one.

TIBCO PageBus as a standalone product is offered by TIBCO Software under the
terms of a BSD license. If you would like support for this product, you may
purchase a product that embeds PageBus and provides support, such as TIBCO
Ajax Message Service™.

For self-service support, education, and access to the TIBCO Developer Network,
visit:

http://developer.tibco.com

For an overview of TIBCO Support Services and information about getting started
with TIBCO Product Support, visit:

http://www.tibco.com/services/support
TIBCO PageBus Developer’s Guide

http://www.tibco.com/services/support
https://support.tibco.com
http://developer.tibco.com
http://developer.tibco.com
http://www.tibco.com/services/support

| 1
Chapter 1 Introduction

This chapter gives an introductory description of TIBCO PageBus, and explains
how PageBus enables interactions between rich web components.

• Overview, page 2

• TIBCO PageBus, page 4

• PageBus Repository, page 7
 TIBCO PageBus Developer’s Guide

2 | Chapter 1 Introduction
Overview

In order to achieve greater flexibility and promote broader use of available
business assets, application developers are increasingly taking advantage of
service-oriented architectures (SOA). This trend is contributing to the rapid
growth of “enterprise mash-ups”—composite Ajax applications that interact with
disparate web services across the enterprise.

In a modern service-oriented architecture, the server side is characterized by
heterogeneous components that interact using well-defined, coarse-grained
service interfaces. These characteristics are uniformly recognized as promoting
reuse, loose coupling, and discoverability, essential qualities in an era of rapid
change. On the client side, however, many enterprise web applications are
monolithic (and built from scratch each time), with either too much functionality
or too little functionality for many user tasks.

Simultaneously, enterprises are increasingly adopting Ajax component-based
approaches as a way to build rich enterprise applications. An Ajax component
strategy separates UI functionality into coarse-grained modules that can be
pieced together or assembled by application developers. Ajax allows developers
to access disparate web services, and create complex user interfaces.

These two trends are highly complimentary. Web applications can be constructed
from different rich Ajax components, and these components can interact with
each other when assembled on the page—enterprise mash-ups. When dashboards
or portals are used, business users can even assemble and personalize application
components on their own pages, creating mash-ups dynamically.

TIBCO PageBus provides a standards-based way to integrate Ajax components
and portlets through publish-subscribe events.
TIBCO PageBus Developer’s Guide

Overview | 3
Support for the OpenAjax Hub 1.0 Standard

PageBus supports the OpenAjax Hub 1.0 specification as of December 2007. It
includes a full implementation of the OpenAjax Hub API. It also provides a
higher-level interface that uses the OpenAjax hub and adds the following
functionality:

• PageBus Repository functionality (see Chapter 2, PageBus Repository, on
page 7)

• FIFO message sequencing

• More robust error handling

Messages published using the higher-level API can be consumed by subscribers
using the lower-level OpenAjax API, and vice versa.

Figure 1 Compatibility with OpenAjax Hub
 TIBCO PageBus Developer’s Guide

4 | Chapter 1 Introduction
TIBCO PageBus

TIBCO PageBus is a pure JavaScript, publish-subscribe message delivery hub that
uses subjects to identify groups of subscribers. Subscribers listen (or subscribe) via
subjects, which usually represent business- or application-level events such as a
user’s selection of a customer or a user’s creation of a new calendar appointment.
Publishers send (or publish) messages on subjects.

When messages are published on a subject, they are delivered to all of the
subject’s current subscribers. When a subscriber no longer needs to listen to traffic
on a subject, it can unsubscribe from the subject.

Figure 2 shows a logical representation of PageBus, publishers, and subscribers.

Figure 2 PageBus, Publishers, and Subscribers
TIBCO PageBus Developer’s Guide

TIBCO PageBus | 5
Figure 3 illustrates PageBus publish-subscribe messaging between three portlets
in an enterprise portal. In this figure, the upper left portlet contains a list from
which the user chooses one of TIBCO’s worldwide offices. The other two portlets
then display information related to the selected office. When a user clicks a city in
the TIBCO Office Selector portlet, that portlet publishes a message on the subject
eg.geo.Location.onSelect. The other two portlets, Currency Cross and Google
Map Example, are subscribers to eg.geo.Location.onSelect. Whenever these
subscribers receive a message, they perform whatever action is appropriate to
their function. As the figure below shows, Currency Cross displays a graph of
recent exchange rates for the local currency, while Google Map Example maps the
location of the selected office.

Figure 3 Portlets and Messaging
 TIBCO PageBus Developer’s Guide

6 | Chapter 1 Introduction
TIBCO PageBus Developer’s Guide

PageBus Repository | 7
Chapter 2 PageBus Repository

Topics

• Using the PageBus Repository, page 8
 TIBCO PageBus Developer’s Guide

8 | Chapter 2 PageBus Repository
Using the PageBus Repository

Application components on a page may need to store information in a way that
allows other components to look it up on demand. The components that use this
information may need to be notified when this information is updated.

PageBus 1.2 implements this common pattern by providing a stateful name-value
repository that is integrated with the publish-subscribe message bus. When
repository entries are added, updated, or removed, the repository automatically
publishes messages. Thus, if a repository entry under the name
com.example.foo.bar is updated, an update notification is automatically
published on com.example.foo.bar. This functionality allows components to
store values for use by other components, while at the same time ensuring that if
the values change, the consumers of these values will be notified.

The repository makes it easy for application components to interact statefully
while remaining loosely coupled and event-based.

The repository supports two operations: store and query.

Store stores a value in the repository under a subject name and then publishes a
message advertising the change. The subject name on which the message is
published is the same as the name of the retistry entry. The message payload
includes name and new value.

Query finds all repository entries matching a specified subject name. For each
matching entry, query invokes a callback function. If the subject contains
wildcard tokens then there might be multiple matches.
TIBCO PageBus Developer’s Guide

| 9
Chapter 3 TIBCO PageBus Interface Reference

Topics

• Overview, page 10

• PageBus.publish, page 13

• PageBus.subscribe, page 14

• PageBus.unsubscribe, page 16

• PageBus.version, page 17

• PageBus.store, page 18

• PageBus.query, page 20

• Subscription Callback, page 22
 TIBCO PageBus Developer’s Guide

10 | Chapter 3 TIBCO PageBus Interface Reference
Overview

TIBCO PageBus consists of two components:

• PageBus API, which includes two objects—PageBus and Subscription.

• Subjects that are used by the APIs to send messages as well as subscribe to
them.

This section describes each of the components and how to use them.

PageBus API
The PageBus object in the PageBus API is a singleton object that you can use to
send and receive messages between your Ajax components.

When using the PageBus API, there must be a single instance of the PageBus
object. If you include pagebus.js, this single instance is automatically created by
pagebus.js. To subscribe to a subject, you must define a callback function and
pass it into PageBus.subscribe. See Subscription Callback on page 22. The
callback function is used by PageBus to handle messages that are published onto
the subscribed subject.

The Subscription object is returned by PageBus.subscribe. It is the handle to
your subscription, and you can use it to unsubscribe from the subscription.

The table below shows the operations you can perform with the PageBus object.

Table 2 PageBus Object

Operation Comment

publish Publish a message on a subject. See PageBus.publish on
page 13 for more information.

subscribe Subscribe to a subject, specifying a callback function to be
invoked when a message is published on the subject. See
PageBus.subscribe on page 14 for more information.

unsubscribe Cancel a subscription on a subject. See PageBus.unsubscribe
on page 16 for more information.

version Return the version number. See PageBus.version on page 17
for more information.

store Store a value in the PageBus repository. See PageBus.store on
page 18 for more information.
TIBCO PageBus Developer’s Guide

Overview | 11
Subjects
Subjects are period-delimited strings. For example: eg.customer.onSelect and
log.info. The periods divide the subject strings into tokens. For example,
eg.customer.onSelect has three tokens: eg, customer, and onSelect.

Subscribers can subscribe to specific subjects, or they can subscribe to wildcard
subjects that match multiple subjects. There are two ways to specify a wildcard
subject:

• Single-asterisk (*) indicates a single-token wildcard, which matches all tokens
at exactly the indicated position. For example, a.*.c matches a.b.c and
a.thing.c

• Double-asterisk (**) indicates a multiple-token wildcard, which matches all
subsequent tokens from its position onward. For example, a.** matches
a.b.c.d and a.e; and ** by itself matches all legal subjects.

Subject Rules

Subject names must adhere to the following rules:

• Subjects must be non-null.

• A subject must consist of dot-delimited tokens. For example:

— Hello

— hello.1.2.3

• A subject can contain any number of tokens. For example:

This.is.AN.example.of.A.very.very.long.subject

• A subject token can contain any number of JSON-compliant characters except
for the asterisk character (*) and the period character (.) . The backslash (\),

query Find all PageBus repository entries that match a specified
name and invokes callback functions to deliver these values
to the application. See PageBus.query on page 20 for more
information.

Table 2 PageBus Object

Operation Comment
 TIBCO PageBus Developer’s Guide

12 | Chapter 3 TIBCO PageBus Interface Reference
control characters, and quotation marks (") are FORBIDDEN in JSON strings
and therefore in PageBus subjects.

For example:
FORBIDDEN: a.b.c*d.e

FORBIDDEN: a.b**.c

FORBIDDEN: a.b\c.d

FORBIDDEN: a.b"c."xyz

We strongly recommend that you AVOID using in subjects any character that
has special meaning in the JavaScript language, such as space, apostrophe ('),
colon (:), angle brackets (< >), and others.

• A subject must not begin with the underline (_) character.

• Empty tokens are forbidden. For example:

— FORBIDDEN: a.b.c..d.e

— FORBIDDEN: a.b.c.

— FORBIDDEN: .a.b.c

• The single-asterisk (*) and double-asterisk (**) wildcards can be used only for
subscription and not for publication.

• The double-asterisk (**) wildcard must not be followed with any token.

If you use the period in a token, such as he.llo, it separates the token into two
tokens.
TIBCO PageBus Developer’s Guide

PageBus.publish | 13
PageBus.publish
Function

This section describes the publish operation.

Description The publish operation publishes one message on a subject. The message is
delivered to all current subscribers whose subscriptions match the subject.

If there are multiple subscribers, the order in which the message is delivered to
the various subscribers is arbitrary.

If PageBus.publish is called twice, so that two messages are published in
sequence, then subscribers will always receive the message that was published
first before they receive the second message.

Returns Null

Parameters

Throws

Remarks All PageBus functions can be safely called from within the subscription callback
function. See Subscription Callback on page 22 for more information on the
callback function.

Name Type Description

subject string Subject name on which to publish the message.
This must not be a wildcard subject.

message any Message content. The reference to the original
message is received by all subscribers (rather than
a copy).

PageBus.BadName The specified subject name did not follow the
subject rules. See Subject Rules on page 11.

PageBus.StackOverflow Probable infinite publisher-subscriber loop
detected and interrupted. This happens if a
publish operation causes a callback that publishes
again, which causes another callback in an infinite
recursion. PageBus.publish detects the cycle
after about 20 iterations and throws this
exception.
 TIBCO PageBus Developer’s Guide

14 | Chapter 3 TIBCO PageBus Interface Reference
PageBus.subscribe
Function

This section describes the subscribe operation.

Description The subscribe operation subscribes to a subject and passes in the reference to a
callback function. The callback function is invoked with the subscriberData and
message whenever someone publishes a message on the subscribed subject.
Subscribed subjects can be wildcard subjects.

Returns Subscription

Parameters Name Type Description

subject string Subject name to which to create the
subscription.

scope object If the value is non-null, the object specified here
becomes the context of the callback function. In
other words, when the JavaScript this
keyword is used in the callback function, it will
point to this object.

If the value is null, then the object window is
used as the default context of the callback
function.

callback function Callback function for PageBus to invoke when a
message is published on the subscribed subject.
See Subscription Callback on page 22 for the
required function signature.

This parameter must not be null.

subscriberData any User-defined. Null values are permitted. This is
useful when the subscriber needs to access or
update any data members when the callback
function is invoked.

filter function Optional callback function. Returns a boolean.
If present, and having a non-null value, it is
called before the subscriber callback. If the filter
function returns true, then the subscription’s
callback function is called. If it returns false, the
callback is not called.
TIBCO PageBus Developer’s Guide

PageBus.subscribe | 15
Throws

Remarks PageBus.subscribe can be safely called from within the subscription callback
function. See Subscription Callback on page 22 for more information on the
callback function.

The filter Parameter

The filter parameter is optional. It corresponds to the OpenAjax Hub 1.0
subscribe filter parameter. The signature of the subscribe function when
this parameter is present is is:

PageBus.subscribe(name, scope, callback, subscriberData, filter)

The filter parameter is a callback function. If present, if is called before the
subscriber callback. If has the following signature:

MyFilterFunc(subject, message, subscriberData)

and returns a Boolean. If the filter function returns true, then the subscription’s
callback function is called. If it returns false, the callback is not called.

If the filter parameter is not provided, e.g., PageBus.subscribe(name, scope,
callback, subscriberData), or if null is specified for the filter function, then
no filter function is associated with the subscription and behavior is exactly as it
was in PageBus 1.1.

PageBus.BadName The specified subject name did not follow the
subject rules. See Subject Rules on page 11.

PageBus.BadParameter A null value was specified for the parameter
callback.

Because the filter function is optional, PageBus 1.1 applications will continue to
work on 1.2. There is no need to modify the 1.1 code.
 TIBCO PageBus Developer’s Guide

16 | Chapter 3 TIBCO PageBus Interface Reference
PageBus.unsubscribe
Function

This section describes the unsubscribe operation.

Description The unsubscribe operation cancels a subscription, using the Subscription object
returned by PageBus.subscribe as a handle to the subscription.

Returns Null

Parameters

Throws

Remarks PageBus.unsubscribe can be safely called from within the subscription callback
function. See Subscription Callback on page 22 for more information on the
callback function.

Name Type Description

subscription Subscription The Subscription object returned by the
PageBus.subscribe operation.

PageBus.BadParameter The value of the subscription parameter is not
a valid subscription. Note that no exception
will be thrown if PageBus.unsubscribe is
called on a subscription that has already been
unsubscribed.
TIBCO PageBus Developer’s Guide

PageBus.version | 17
PageBus.version
Data Member

This section describes the version data member.

Description A string constant (X.Y.Z) that indicates the version of the PageBus API.

Value The string "1.2.0".
 TIBCO PageBus Developer’s Guide

18 | Chapter 3 TIBCO PageBus Interface Reference
PageBus.store
Function

This section describes the store operation.

Description The store operation stores a value in the PageBus repository under the specified
name. It then publishes a message on the specified name to notify any subscribers
of the change. If the value is null, then the store operation removes the specified
repository entry.

Returns Null

Parameters

The following table describes the quiet property, which is an optional property of
the optional props properties object:

Throws

Name Type Description

subject string Name under which value is stored in
repository, and on which repository then
publishes notification message. Must not be a
wildcard subject or null.

value any The value that is to be stored. Typically object
or string.

props object Optional properties object. May contain an
optional quiet property, described in the
table below.

Name Type Description

quiet boolean If present and true, does not publish a
notification message.

PageBus.BadName The specified subject name did not follow the
subject rules for publishers. See Subject Rules on
page 11.
TIBCO PageBus Developer’s Guide

PageBus.store | 19
Remarks Can be safely called from within subscriber callback function or a repository
query callback function.

When storing an object value, store a new object each time, just as you would do if
you were publishing the object value. Don't update the existing value. Don't
change the properties of a stored object without calling store(); such changes
won't result in publish notifications

The optional props object may contain properties that affect how the function
behaves. If the object looks like this:

{ quiet: true }

then the repository will not publish a notification message when the update
completes. This might be used if an OpenAjax Hub subscriber is calling
store() to automatically cache values published by an ordinary publisher; in
this case we would not want the repository to redundantly republish every
message.

PageBus.StackOverflow Probable infinite publisher-subscriber loop
detected and interrupted. This happens if a
publish operation causes a callback that publishes
again, which causes another callback in an infinite
recursion. PageBus.store detects the cycle after
about 20 iterations and throws this exception.
 TIBCO PageBus Developer’s Guide

20 | Chapter 3 TIBCO PageBus Interface Reference
PageBus.query
Function

This section describes the query operation.

Description The query operation finds all PageBus repository entries that match the specified
name and invokes a specified callback function to deliver these values to the
application. The interface and application-visible behavior resemble those of
PageBus.subscribe, except that only the querying component has its callbacks
invoked.

Query callback functions have essentially the same signature as subscribe
callback functions, except that a query callback function returns a Boolean value.
If the callback returns false, then the query aborts and no additional results are
processed. Otherwise, the query continues until there are more results to pass
back.

After all of the results have been delivered via the query callback, the callback is
invoked one last time with the subject com.tibco.pagebus.query.done to
indicate that no more results are available.

Returns Null

Parameters
Name Type Description

subject string Subject name. May include wildcards.

scope object If the value is non-null, the object specified
here becomes the context of the callback
function. In other words, when the JavaScript
this keyword is used in the callback
function, it will point to this object.

If the value is null, then the object window is
used as the default context of the callback
function.

callback function Callback function for PageBus to invoke for
each query result.

data any User-defined. Null values are permitted. This
is useful when the subscriber needs to access
or update any data members when the
callback function is invoked.

filter function
TIBCO PageBus Developer’s Guide

PageBus.query | 21
Remarks Can be safely called from within subscriber callback function or a repository
query callback function.

PageBus uses the subscriberData, scope, and filter parameters of PageBus.query
in the same way that it uses the corresponding parameters of
PageBus.subscribe.

Query Result Callback
This section describes the signature of a callback function that is passed into
PageBus.query().

Description A function must be implemented with the parameters below and passed into
PageBus.query as the callback parameter. It then acts as the subscriber’s
message handler to handle messages that match the query subject.

Returns Boolean

If true, then continue to invoke callbacks and deliver results. If false, abort the
query; no further results will be delivered.

Parameters
Name Type Description

subject string Subject name under which value is stored.

value any Value stored under the specified name.

data any data parameter passed into
PageBus.query().
 TIBCO PageBus Developer’s Guide

22 | Chapter 3 TIBCO PageBus Interface Reference
Subscription Callback

This section describes the function signature of the subscription callback function.

Description A function must be implemented with the parameters below and passed into
PageBus.subscribe as the callback parameter. It then acts as the subscriber’s
message handler to handle messages that match the subscribed subject.

Returns Null

Parameters

Remarks PageBus.subscribe, PageBus.unsubscribe and PageBus.publish can be
safely called from within the callback function.

Message Delivery Sequence for Recursive Publish

PageBus enforces FIFO delivery of messages. If the delivery of a message results
in the publication of a second message, all subscribers who receive both messages
will receive the first message before they see the second one.

Name Type Description

subject

(Read only)

string Reference to the string subject on which the
message was published.

message

(Read only)

any Reference to the message that was published.

Do not modify the data, as all other subscribers
receive the same reference.

subscriberData any Reference to the subscriberData parameter that
was specified by the subscriber in
PageBus.subscribe.

If subscriberData is a reference to an object,
the object members are writable. If it is an array,
elements can be added or removed.

Callbacks should not throw exceptions. If a callback does throw an exception,
PageBus will handle it gracefully (see below) but as a rule, callbacks should catch
and handle their own exceptions. Exceptions should never be used as a
mechanism for communicating between subscriber and publisher.
TIBCO PageBus Developer’s Guide

Subscription Callback | 23
If a subscriber callback calls PageBus.publish recursively, PageBus.publish
ensures FIFO delivery of the messages. It finishes delivering the first message to
subscribers before it begins to deliver the recursively published message.
Delivery of the recursively published message is deferred until the first message
has been delivered.

This behavior is only guaranteed when using PageBus.publish. If you call
OpenAjax.hub.publish, messages are not necessarily delivered in sequence.

In other words, if delivery of a message M1 causes a call to
PageBus.publish(s, M2), then all subscribers see M1 before M2. But if delivery
of M1 causes a call to OpenAjax.hub.publish(s, M2) then applications cannot
assume anything about the delivery order; some subscribers may receive M2
before M1.

Errors in Callbacks

As a best practice, subscriber callbacks should catch and handle all exceptions;
they should not throw exceptions. In particular, callbacks must never use
exceptions to communicate with the publisher.

If a callback throws an exception, publish does the following:

1. It catches the exception.

2. It immediately publishes a message on the subject
com.tibco.pagebus.error.callbackError. Subscribers to this subject will
immediately be invoked (bypassing the usual FIFO behavior of
PageBus.publish). Application code can subscribe to this subject in order to
be notified when a callback throws an exception.

3. It finishes delivering the original message to the original subscribers.

4. It returns normally, without throwing an exception.

This behavior achieves several goals:

1. PageBus delivers messages reliably to all subscribers. A single dysfunctional
callback does not prevent delivery to other subscribers.

2. Callbacks can never use exceptions to communicate with the publisher.

The payload message published on
com.tibco.pagebus.error.callbackError is a JavaScript object with the
following structure:

{
 name: "<string>", // the PageBus subject associated with the

// callback invocation that threw the error
 error: "<string>" // the Error.message value>
}

 TIBCO PageBus Developer’s Guide

24 | Chapter 3 TIBCO PageBus Interface Reference
The name and error are escaped using escape().

Application components can subscribe to
com.tibco.pagebus.error.callbackError. They will then be notified when
PageBus.publish catches an exception thrown by a subscriber callback.
Handlers for such messages might do things like display alert messages, send the
browser immediately to an error page, or replace a faulty component with an
error box. Of course, the best practice is for callbacks to catch and handle their
own exceptions.

When subscribing to com.tibco.pagebus.error.callbackError, the callback
function passed into subscribe must never throw exceptions.
TIBCO PageBus Developer’s Guide

| 25
Chapter 4 Example Code

Topics

• Example Code, page 26

• Publisher Example in TIBCO General Interface, page 29

• Subscriber Example in TIBCO General Interface, page 31

• Recommended Message Structure, page 33
 TIBCO PageBus Developer’s Guide

26 | Chapter 4 Example Code
Example Code

This section provides examples that demonstrate how to use PageBus operations
in your code.

Initialization
Before using PageBus, you must link to pagebus.js in the <head> area of your
web page.

<html>
<head>
<title>Home</title>

<script
src="/sta-pb/PortalTemplates/UtilityScriptlets/pagebus/pagebus.js"

language="JavaScript1.2"></script>
...

PageBus.publish
The following JavaScript code demonstrates the PageBus.publish operation.

// Create the message
var message = { caseid: "654321",

workitem: "WI-123",
summary: "Here is some info." };

// Publish the message using PageBus
window.PageBus.publish("eg.workItem.onSelect", message);

PageBus.subscribe
The following JavaScript code demonstrates the PageBus.subscribe operation.

// Create a scope object
var myScope = {};

// Create a subscriberData.
// This could be an object or simply a string, or null.
var subscriberData = { whatever: "I", want: "to put here" };
TIBCO PageBus Developer’s Guide

Example Code | 27
// Subscribe to a subject.
var mySubscription = window.PageBus.subscribe(

"eg.workItem.onSelect",
myScope,
myFunc,
mySubscriberData);

PageBus.unsubscribe
The following JavaScript code shows how a subscription can be cancelled.

// mySubscription is the Subscription object returned
// by PageBus.subscribe (see PageBus.subscribe).
window.PageBus.unsubscribe(mySubscription);

Subscription Callback
The following JavaScript code demonstrates the subscription callback function.

function myFunc(subject, message, subscriberData) {

// Do something with message, subscriberData,
// and possibly subject.

}

Publishing Messages in Subscription Callback
The following JavaScript code demonstrates how to publish a message in the
subscription callback function.

function myCallbackLogger(subject, message, subscriberData) {
try {

var aMessage = { foo: "bar", baz: 2, boo: { a: 1 } };
window.PageBus.publish("My.Logger", aMessage);

}
catch(err) {

// ... do something ...
}

}

 TIBCO PageBus Developer’s Guide

28 | Chapter 4 Example Code
PageBus.store
The following example demonstrates the PageBus.store operation.

// Create a value
var message = { xyz: 123, abc: "def" };
// Store it
window.PageBus.store("com.example.sample", message);
// Clear it
window.PageBus.store("com.example.sample", null);

Subscribing to Update Notifications from PageBus.store
The following example demonstrates subscribing to update notifications from

PageBus.store.

// Subscribing to the subject
var s = window.PageBus.subscribe("com.example.foo.*.bar", myScope,
mySubCallback, "My Data", null);

PageBus.query
The following example demonstrates the PageBus.query operation.

var myScope = window;
var myData = "example";

myCallback = function(s, val, d) {
 alert(val);
 return true;
}

// Query 1
window.PageBus.query("com.example.sample", myScope, myCallback,
"Some Data", null);

// Query 2
window.PageBus.query("com.example.foo.*.bar", myScope, myCallback,
"Some Data", null);

mySubCallback = function(s, val, d) {
 alert(val);
 return true;
}

TIBCO PageBus Developer’s Guide

Publisher Example in TIBCO General Interface | 29
Publisher Example in TIBCO General Interface

This section demonstrates how to publish messages using PageBus in TIBCO
General Interface™.

Figure 4 shows General Interface Builder with a component called matrix1 that
displays a list of work items and publishes a message when a record is selected in
the list.

Figure 4 PageBus Publisher in General Interface Builder

In Figure 4, the matrix1 component is selected in the Component Hierarchy
palette (bottom left), and the Events Editor palette (bottom right) shows the event
handlers for the matrix1 component. You can see that a Select event handler has
been added to the matrix1 component. It executes the function onChangeSel.
 TIBCO PageBus Developer’s Guide

30 | Chapter 4 Example Code
The complete logic.js file for matrix1 is shown below. As you can see,
onChangeSel simply creates a message object and publishes it.

jsx3.lang.Package.definePackage(
"eg.WorkItemList", // the full package name
function(WorkItemList) { // short package name, good

// to use in this

WorkItemList.getServer = function() {
// should be the same as namespace in
// Project -> Deployment Options
return WorkItemList32;

};

/**
* This method will publish to the topic. Any clients
* subscribed to PageBus will receive the message.
*/

onChangeSel = function(matrix, strId, guiEvent) {

var selectedNodes = matrix.getSelectedNodes();
if (selectedNodes == null)

return;
var objRecord = selectedNodes.getItem(0);

var cid = objRecord.getAttributeNode("jsxid").getValue();
var wi = objRecord.getAttributeNode("jsxtext").getValue();
var su = objRecord.getAttributeNode("summary").getValue();
var ev = { jss: "eg.WorkItemSummary",

jssv: "1.0.0",
caseid:cid,
workitem:wi,
summary:su };

window.PageBus.publish("eg.workItem.onSelect", ev);
}

})
TIBCO PageBus Developer’s Guide

Subscriber Example in TIBCO General Interface | 31
Subscriber Example in TIBCO General Interface

This section demonstrates how to subscribe to messages using PageBus in
General Interface™.

Figure 5 shows General Interface™ Builder with a component that listens for
PageBus messages and displays the fields from these messages.

Figure 5 PageBus Subscriber in General Interface Builder

In Figure 5, a function called eg.WorkItemInfo.onLoad has been added to the
onLoad Script field in the Project Settings palette. Functions in the onLoad Script
field are executed when the component is initialized. Therefore, you can insert a
function that creates a PageBus subscription in this field.

The complete logic.js file for this General Interface component is shown next.
As you can see, eg.WorkItemInfo.onLoad simply subscribes to the subject
"eg.workItem.onSelect", and the function call includes the callback function called
eg.WorkItemInfo.onMessage, which outputs the message content in the
respective text fields.

Note that the short package name , WorkItemInfo, is used in the logic.js code
instead of the full package name, eg.WorkItemInfo.
 TIBCO PageBus Developer’s Guide

32 | Chapter 4 Example Code
jsx3.lang.Package.definePackage(
"eg.WorkItemInfo", // Full package name
function(WorkItemInfo) { // Short package name

WorkItemInfo.getServer = function() {
// Should return the value of the Namespace field in the
// Deployment tab of the Project Settings palette.

return WorkItemInfo32;
};

WorkItemInfo.onLoad = function() {
 // Subscribe to PageBus subject
 window.PageBus.subscribe("eg.workItem.onSelect",

WorkItemInfo.onMessage,
WorkItemInfo);

};

/*
* This is the callback for the PageBus subscription.
*/

WorkItemInfo.onMessage = function(subject, message) {

// Get the text input that will be set to the case id
// received in the message
var inp = WorkItemInfo.getServer().getJSXByName("caseidin");
// Now set its value
inp.setValue(message.caseid);

inp = WorkItemInfo.getServer().getJSXByName("workitemin");
inp.setValue(message.workitem);

inp = WorkItemInfo.getServer().getJSXByName("summaryin");
inp.setValue(message.summary);

};

})
TIBCO PageBus Developer’s Guide

Recommended Message Structure | 33
Recommended Message Structure

This section describes the recommended message structure when publishing
messages. While you can use other message structures, extensions provided by
TIBCO or other vendors may take advantage of this common structure.

The recommended message structure is shown below:

{
 jss: "org.pagebus.msg.Message",
 jssv: "0.9.1",
 head: {HeaderName1: HeaderValue1, HeaderName2: HeaderValue2, …},
 body: yourMessageBody
}

See Table 3 below for the format of each data member in the recommended
message structure.

Table 3 Recommended Message Data Member

Member Type Comment

jss string The string "org.pagebus.msg.Message".

jssv string Version of this message class definition. The current
version is "1.0.0".

head object Object that specifies a set of headers.

This member is optional. If present, it must be an object. It
can include any number of headers, and it also can be
empty.

body any Message body. It is typically either an XML or JSON string
or a JavaScript object.
 TIBCO PageBus Developer’s Guide

34 | Chapter 4 Example Code
Samples

Samples are found in the samples directory included with PageBus. The
index.htm file in this directory provides links to the samples and descriptions of
each:

For more information and the latest samples, visit the PageBus resource center:

http://www.tibco.com/devnet/pagebus.
TIBCO PageBus Developer’s Guide

| 35
Chapter 5 Best Practices and Frequently Asked
Questions

This section provides some guidance for developers and architects who intend to
make use of TIBCO PageBus, as well as answering a number of common
questions.

Topics

• Application Design Strategy, page 36

• PageBus Versus Raw JavaScript APIs, page 37

• Performance Considerations, page 38

• Security and Mash-Ups, page 40

• Subject Naming, page 41

• Frequently Asked Questions, page 42
 TIBCO PageBus Developer’s Guide

36 | Chapter 5 Best Practices and Frequently Asked Questions
Application Design Strategy

TIBCO PageBus can help you build composite web applications that are much
more modular than ones that are built with traditional approaches. Some
additional techniques will help you maximize the reusability and manageability
of these applications.

• Architect application components as coarse-grained, rich portlets or Ajax
components rather than fine-grained controls.

• Each rich portlet or Ajax component should have a well-defined PageBus
interface, providing an abstraction boundary between the component and
other elements of the page and hiding the UI and implementation of the
component. For example, if a rich portlet publishes messages on the subject
eg.customer.onSelect, then it should not matter to subscribers if the
messages were published in response to a button click, a node selection, or the
receipt of an Ajax response from a web service.

• Subjects and messages should relate to the business or application level rather
than the DOM level to ensure implementation-independence of portlets and
Ajax components. Because messages relate to the application level, avoid
making them correspond to DOM events. For example,
eg.customer.onSelect is an appropriate subject name, but not link.click.

• Establish a shared concept model and set of event messages. Rich components
from different developers and organizations can use these standard models
and messages to interact with each other.

• Subject strings should not be scattered around the code. Try to isolate them
and configure them as component properties. Doing so will allow you to
modify them easily without having to track down every instance of your
subject strings. It will also enable you to integrate components efficiently.

• If different application components initialize at different rates, a subscriber
might not be initialized until after a given publisher has published a value. If
this would result in improper behavior, then the publisher should probably
use PageBus.store rather than PageBus.publish, and the subscriber
should both subscribe to the notification subject and perform a
PageBus.query to obtain the current value(s) for each matching subject.

• If a publisher needs to discover certain information about subscribers (see the
"Feature Discovery Store/Query" sample), then the subscribers can use
PageBus.store to advertise this information, and the publisher can use
PageBus.query and PageBus.subscribe to discover the information
and/or track changes.
TIBCO PageBus Developer’s Guide

PageBus Versus Raw JavaScript APIs | 37
PageBus Versus Raw JavaScript APIs

PageBus is an extremely useful tool, but it is not the only tool at your disposal.
While interfaces between Ajax components and other page components are
frequently event-based, there are also many cases in which more tightly coupled
interfaces are required.

Use PageBus-based events when:

• Components may appear alone or in groups.

• Interactions are primarily event-based.

• One-to-many, many-to-one, or many-to-many communication is possible.

• Component implementations should be relatively decoupled.

• Brokers or proxy services may be used.

Use Raw JavaScript APIs when:

• Components always appear in a single grouping and configuration.

• Interactions are primarily request-response.

• Interactions are tightly-coupled and one-to-one.

• Application components are using fine-grained, internal events. Internal events
are events that are propagated only within a single application component
and are not exposed or visible outside of that component.

Use the Two Approaches Together

Change notifications can use the publish-subscribe interface in PageBus, while
queries for detailed data may use either a common cache or a request-reply API.
For example, a graph can be told to plot a set of points using PageBus, but at the
same time it may be allowed to retrieve additional information about each point
by calling a JavaScript function.
 TIBCO PageBus Developer’s Guide

38 | Chapter 5 Best Practices and Frequently Asked Questions
Performance Considerations

This section briefly describes how PageBus performs, and the overhead in
different browsers. Design considerations are also discussed.

PageBus Performance
Table 4 shows the approximate time it takes PageBus to deliver 100,000 messages
from one publisher to one subscriber on a fast 2.33 GHz laptop computer, where
the subscriber does nothing with the messages that it receives. It shows that, on
average, PageBus takes approximately 30 microseconds to deliver a message from
the publisher to the subscriber.

However, even if users could actually see 100,000 changes per second, browsers
can’t render data to the screen this quickly. Mozilla Firefox 1.5 renders 5,000
values in about 3 seconds on the same computer. So the cost of the render
operation dwarfs the cost of a PageBus message delivery. If you use TIBCO
PageBus wisely, the performance limiting factor in your applications will be your
applications’ rendering or AJAX communication logic rather than the
performance of the PageBus.

Design Considerations
Assuming that your application involves both business logic and sophisticated
rendering, the limiting factors in an Ajax application’s performance will almost
certainly be the amount of rendering and the amount of network I/O that the
application performs. Performing unnecessary rendering and network I/O can
drastically impede an Ajax application’s performance.

You should consider the following factors when planning the message publishing
rate in your web application:

• Browser’s performance (speed of rendering to screen)

• Amount and complexity of rendering logic in the callback function

Table 4 PageBus Performance Data

Browser Time (sec.)

Firefox 3

Internet Explorer 6 4

Opera 2
TIBCO PageBus Developer’s Guide

Performance Considerations | 39
• Amount of network I/O logic in the callback function

• Network delays from I/O logic

• Application performance with concurrent processes

• Application performance on slow computers
 TIBCO PageBus Developer’s Guide

40 | Chapter 5 Best Practices and Frequently Asked Questions
Security and Mash-Ups

Any time you allow JavaScript from untrusted parties to run on a web page that
contains sensitive information, there is a potential security risk. This is because
JavaScript on a web page can access any JavaScript function on that page, traverse
and update the DOM objects, and potentially communicate with any server using
Ajax.

Use of PageBus neither increases nor decreases the potential security threat
associated with running untrusted JavaScript code.

When building mash-ups, you should avoid running untrusted JavaScript code
when the page contains sensitive information. You may want to think of each
page as a security zone, and control the types of Ajax components that are
allowed in that zone.
TIBCO PageBus Developer’s Guide

Subject Naming | 41
Subject Naming

We recommend that you use Java package notation when designing subject
names. For example:
com.tibco.portal.foo.bar

com.cisco.etc.etc

org.myorg.etc.etc.etc.etc

This technique avoids subject name clashes between organizations.
 TIBCO PageBus Developer’s Guide

42 | Chapter 5 Best Practices and Frequently Asked Questions
Frequently Asked Questions

This section answers frequently asked questions.

How do we Troubleshoot Applications using PageBus?
It is very difficult to troubleshoot monolithic applications. By enabling the
development of more modular applications and cleaner interfaces, PageBus can
help you to create applications that are easier to troubleshoot. In addition, the
specific architecture of PageBus makes interfaces based on PageBus inherently
easier to troubleshoot than "raw" scripting interfaces.

To troubleshoot your applications based on PageBus, you can take advantage of
the fact that PageBus allows for any number of subscribers. For example, you can
add a "Logger" subscriber that listens for messages on some subjects and logs
them to a table on the page. Such loggers can be simple or elaborate. They are
typically used only in development and testing phases and are removed later,
since they do not affect how the other components operate.

How do we Test Applications using PageBus?
You can use the same method described in the previous section to test your
components based on PageBus by attaching record-and-playback components to
your application components in order to confirm that message traffic generated
by the components complies with expectations.

How do we Integrate PageBus with TIBCO Ajax Message Service?
TIBCO Ajax Message Service is pre-integrated with TIBCO PageBus. Please see
the Ajax Message Service product documentation for relevant information.

Can Subjects be Configured?
Yes. While PageBus subjects can be created on the fly by application components
just prior to subscribe and publish calls, some application components may
obtain subjects from application-specific configuration objects.

Does PageBus Require a Portal?
No. While PageBus may be packaged with TIBCO PortalBuilder or other TIBCO
software, it does not require a portal in order to function.
TIBCO PageBus Developer’s Guide

Frequently Asked Questions | 43
Rich Internet application (RIA) components that interact using PageBus do not
need to be portlets. However, PageBus provides an ideal browser-based,
event-based communication mechanism for rich portlets. The ability of the
PageBus to support zero to many subscribers or publishers on a subject is very
useful in a portal page that contains an unspecified number of related portlets.

Does PageBus Require TIBCO General Interface?
No. PageBus does not require TIBCO General Interface in order to function.
 TIBCO PageBus Developer’s Guide

44 | Chapter 5 Best Practices and Frequently Asked Questions
TIBCO PageBus Developer’s Guide

TIBCO PageBus BSD License | 45
TIBCO PageBus BSD License

Copyright (c) 2007, TIBCO Software Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:

• Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

• The name of TIBCO Software Inc. may not be used to
endorse or promote products derived from this software
without specific prior written permission of TIBCO
Software Inc.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT
HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 TIBCO PageBus Developer’s Guide

46 | Third Party Software License Agreements
Third Party Software License Agreements
The following are the software licenses for the Third Party Software
provided in connection with the software.

Apache License, Version 2.0, January 2004

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND
DISTRIBUTION

1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the
copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other
entities that control, are controlled by, or are under common control
with that entity. For the purposes of this definition, "control" means (i)
the power, direct or indirect, to cause the direction or management of
such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50%) or more of the outstanding shares, or (iii) beneficial
ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising
permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but not limited
to compiled object code, generated documentation, and conversions
to other media types.

"Work" shall mean the work of authorship, whether in Source or Object
form, made available under the License, as indicated by a copyright
notice that is included in or attached to the work (an example is
provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the
purposes of this License, Derivative Works shall not include works that
remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the
original version of the Work and any modifications or additions to that
Work or Derivative Works thereof, that is intentionally submitted to
Licensor for inclusion in the Work by the copyright owner or by an
individual or Legal Entity authorized to submit on behalf of the
copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control
systems, and issue tracking systems that are managed by, or on
behalf of, the Licensor for the purpose of discussing and improving the
Work, but excluding communication that is conspicuously marked or
otherwise designated in writing by the copyright owner as "Not a
Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on
behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly
display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this
License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except
as stated in this section) patent license to make, have made, use, offer
to sell, sell, import, and otherwise transfer the Work, where such
license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s) alone
or by combination of their Contribution(s) with the Work to which such
Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit)
alleging that the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any patent
licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative
Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that
You distribute, all copyright, patent, trademark, and attribution
notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works;
and

(d) If the Work includes a "NOTICE" text file as part of its distribution,
then any Derivative Works that You distribute must include a
readable copy of the attribution notices contained within such
NOTICE file, excluding those notices that do not pertain to any
part of the Derivative Works, in at least one of the following
places: within a NOTICE text file distributed as part of the
Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display
generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE
file are for informational purposes only and do not modify the
License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an
addendum to the NOTICE text from the Work, provided that such
additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions for
use, reproduction, or distribution of Your modifications, or for any such
Derivative Works as a whole, provided Your use, reproduction, and
distribution of the Work otherwise complies with the conditions stated
in this License.
TIBCO PageBus Developer’s Guide

Third Party Software License Agreements | 47
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work by
You to the Licensor shall be under the terms and conditions of this
License, without any additional terms or conditions. Notwithstanding
the above, nothing herein shall supersede or modify the terms of any
separate license agreement you may have executed with Licensor
regarding such Contributions.

6. Trademarks. This License does not grant permission to use the
trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the
NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed
to in writing, Licensor provides the Work (and each Contributor
provides its Contributions) on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS
FOR A PARTICULAR PURPOSE. You are solely responsible for
determining the appropriateness of using or redistributing the Work
and assume any risks associated with Your exercise of permissions
under this License.

8. Limitation of Liability. In no event and under no legal theory, whether
in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or
agreed to in writing, shall any Contributor be liable to You for
damages, including any direct, indirect, special, incidental, or
consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not
limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or
losses), even if such Contributor has been advised of the possibility of
such damages.

9. Accepting Warranty or Additional Liability. While redistributing the
Work or Derivative Works thereof, You may choose to offer, and
charge a fee for, acceptance of support, warranty, indemnity, or other
liability obligations and/or rights consistent with this License. However,
in accepting such obligations, You may act only on Your own behalf
and on Your sole responsibility, not on behalf of any other Contributor,
and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or
additional liability.
 TIBCO PageBus Developer’s Guide

48 | Third Party Software License Agreements
TIBCO PageBus Developer’s Guide

	TIBCO PageBus™
	Contents
	Preface
	Related Documentation
	TIBCO PageBus Documentation
	Other TIBCO Product Documentation

	Typographical Conventions
	How to Contact TIBCO Support

	Chapter 1 Introduction
	Overview
	TIBCO PageBus

	Chapter 2 PageBus Repository
	Using the PageBus Repository

	Chapter 3 TIBCO PageBus Interface Reference
	Overview
	PageBus API
	Subjects

	PageBus.publish
	PageBus.subscribe
	PageBus.unsubscribe
	PageBus.version
	PageBus.store
	PageBus.query
	Query Result Callback

	Subscription Callback

	Chapter 4 Example Code
	Example Code
	Initialization
	PageBus.publish
	PageBus.subscribe
	PageBus.unsubscribe
	Subscription Callback
	Publishing Messages in Subscription Callback
	PageBus.store
	Subscribing to Update Notifications from PageBus.store
	PageBus.query

	Publisher Example in TIBCO General Interface
	Subscriber Example in TIBCO General Interface
	Recommended Message Structure
	Samples

	Chapter 5 Best Practices and Frequently Asked Questions
	Application Design Strategy
	PageBus Versus Raw JavaScript APIs
	Performance Considerations
	PageBus Performance
	Design Considerations

	Security and Mash-Ups
	Subject Naming
	Frequently Asked Questions
	How do we Troubleshoot Applications using PageBus?
	How do we Test Applications using PageBus?
	How do we Integrate PageBus with TIBCO Ajax Message Service?
	Can Subjects be Configured?
	Does PageBus Require a Portal?
	Does PageBus Require TIBCO General Interface?

	TIBCO PageBus BSD License
	Third Party Software License Agreements

