
©	ISO	2020	–	All	rights	reserved	

	

ISO/CD	24623-2:2020(E)	

ISO	TC	37/SC	4/WG	6	

Secretariat:	KATS	

Language	resource	management	—	Corpus	query	lingua	franca	
(CQLF)	—	Part	2:	Ontology	

	

CD	stage	
	

Warning	for	WDs	and	CDs	

This	document	 is	not	an	 ISO	 International	Standard.	 It	 is	distributed	 for	review	and	comment.	 It	 is	subject	 to	
change	without	notice	and	may	not	be	referred	to	as	an	International	Standard.	

Recipients	of	this	draft	are	invited	to	submit,	with	their	comments,	notification	of	any	relevant	patent	rights	of	
which	they	are	aware	and	to	provide	supporting	documentation.	

	

ISO/CD	24623-2:2020(E)	

ii	 ©	ISO	2020	–	All	rights	reserved	

©	ISO	2020	

All	rights	reserved.	Unless	otherwise	specified,	or	required	in	the	context	of	its	implementation,	no	part	of	this	
publication	may	be	reproduced	or	utilized	otherwise	 in	any	 form	or	by	any	means,	electronic	or	mechanical,	
including	photocopying,	or	posting	on	the	internet	or	an	intranet,	without	prior	written	permission.	Permission	
can	be	requested	from	either	ISO	at	the	address	below	or	ISO’s	member	body	in	the	country	of	the	requester.	

ISO	copyright	office	
CP	401	•	Ch.	de	Blandonnet	8	
CH-1214	Vernier,	Geneva	
Phone:	+41	22	749	01	11	
Email:	copyright@iso.org	
Website:	www.iso.org	

Published	in	Switzerland	

ISO	24623-2:2020(E)	

©	ISO	2020	–	All	rights	reserved	 iii	

Contents	

Foreword	...	iv

Introduction	...	v

1 Scope	..	1

2 Normative	references	..	1

3 Terms	and	definitions	..	1

4 Motivation	and	aims	(informative)	...	3

5 CQLF	Ontology	..	4
5.1 OWL	DL	formalism	..	4
5.2 Structure	of	the	ontology	..	5
5.3 CQLF	Metamodel	..	7
5.4 Functionalities	..	9
5.5 Frames	...	10
5.6 Use	Cases	..	11
5.7 CQLs	..	12

6 Conformance	statements	..	12
6.1 Positive	conformance	statements	..	12
6.2 Negative	conformance	statements	..	13

Annex	A	(informative)		RDF/XML	serialization	of	CQLF	Ontology	(normative	part)	14

Annex	B	(informative)		Illustrative	examples	of	non-normative	elements	in	the	CQLF	
Ontology	...	15

B.1 Example	ontology	..	15

B.2 Frames	...	15

B.3 Use	Cases	..	16

B.4 CQLs	..	16

B.5 Conformance	statements	..	16

Annex	C	(informative)		CQLF	Ontology:	Moderated	community	process	...	18

Bibliography	...	19

	

ISO/CD	24623-2:2020(E)	

iv	 ©	ISO	2020	–	All	rights	reserved	

Foreword	

ISO	 (the	 International	 Organization	 for	 Standardization)	 is	 a	 worldwide	 federation	 of	 national	
standards	 bodies	 (ISO	 member	 bodies).	 The	 work	 of	 preparing	 International	 Standards	 is	 normally	
carried	out	 through	 ISO	 technical	 committees.	Each	member	body	 interested	 in	a	subject	 for	which	a	
technical	 committee	 has	 been	 established	 has	 the	 right	 to	 be	 represented	 on	 that	 committee.	
International	organizations,	governmental	and	non-governmental,	in	liaison	with	ISO,	also	take	part	in	
the	 work.	 ISO	 collaborates	 closely	 with	 the	 International	 Electrotechnical	 Commission	 (IEC)	 on	 all	
matters	of	electrotechnical	standardization.	

The	 procedures	 used	 to	 develop	 this	 document	 and	 those	 intended	 for	 its	 further	 maintenance	 are	
described	in	the	ISO/IEC	Directives,	Part	1.	In	particular,	the	different	approval	criteria	needed	for	the	
different	types	of	ISO	documents	should	be	noted.	This	document	was	drafted	in	accordance	with	the	
editorial	rules	of	the	ISO/IEC	Directives,	Part	2	(see	www.iso.org/directives).	

Attention	is	drawn	to	the	possibility	that	some	of	the	elements	of	this	document	may	be	the	subject	of	
patent	rights.	 ISO	shall	not	be	held	responsible	 for	 identifying	any	or	all	such	patent	rights.	Details	of	
any	patent	rights	identified	during	the	development	of	the	document	will	be	in	the	Introduction	and/or	
on	the	ISO	list	of	patent	declarations	received	(see	www.iso.org/patents).	

Any	trade	name	used	in	this	document	is	information	given	for	the	convenience	of	users	and	does	not	
constitute	an	endorsement.	

For	 an	 explanation	 of	 the	 voluntary	 nature	 of	 standards,	 the	 meaning	 of	 ISO	 specific	 terms	 and	
expressions	 related	 to	 conformity	 assessment,	 as	 well	 as	 information	 about	 ISO's	 adherence	 to	 the	
World	 Trade	 Organization	 (WTO)	 principles	 in	 the	 Technical	 Barriers	 to	 Trade	 (TBT),	 see	
www.iso.org/iso/foreword.html.	

This	 document	 was	 prepared	 by	 Technical	 Committee	 ISO/TC	 37,	 Language	 and	 Terminology,	
Subcommittee	SC	4,	Language	Resource	Management.	

A	list	of	all	parts	in	the	ISO	24623	series	can	be	found	on	the	ISO	website.

Any	feedback	or	questions	on	this	document	should	be	directed	to	the	user’s	national	standards	body.	A	
complete	listing	of	these	bodies	can	be	found	at	www.iso.org/members.html.	

ISO	24623-2:2020(E)	

©	ISO	2020	–	All	rights	reserved	 v	

Introduction	

Technical	 Committee	 ISO/TC	37,	 Language	 and	 Terminology,	 Subcommittee	 SC	4,	 Language	 Resource	
Management	has	developed	several	families	of	standards	codifying	various	aspects	of	representation	of	
language	 data.	 These	 standards	 describe	 general	 corpus-oriented	 data	 models	 in	 the	 Linguistic	
Annotation	Framework	(LAF,	ISO	24612)	family,	various	aspects	of	the	semantic	representation	in	the	
family	of	the	Semantic	Annotation	Framework	(SemAF,	ISO	24617-1	[2]	and	others),	the	representation	
of	 lexical	data	 in	the	Lexical	Markup	Framework	family	(LMF,	ISO	24613-1	[1]	and	others),	as	well	as	
the	representation	of	metadata	in	the	Component	Metadata	Infrastructure	(CMDI,	ISO	24622-1	[3]	and	
others).	Complementary	 to	 the	standards	concerning	 the	representation	of	 language	data,	 the	Corpus	
Query	 Lingua	 Franca	 (henceforth	 CQLF)	 family	 of	 standards	 focuses	 on	 the	 exploitation	 of	 language	
data	and	ways	to	satisfy	various	kinds	of	information	needs	targeting	these	data.	

The	CQLF	Metamodel,	described	by	Part	1	of	the	standard	series	(CQLF-1,	ISO	24623-1),	is	a	maximally	
permissive	construct	that	establishes	means	of	describing	the	scope	of	corpus	query	languages	(CQLs)	
at	 a	general	 level	 and	with	a	 focus	on	various	kinds	of	data	models	assumed	by	query	 systems,	with	
conformance	 conditions	 meant	 to	 be	 satisfied	 by	 a	 wide	 range	 of	 CQLs.	 The	 Metamodel	 provides	 a	
“skeleton”	 for	 a	 CQL	 taxonomy	 by	 setting	 up	 basic	 categories	 of	 corpus	 queries	 (encoded	 as	 CQLF-1	
levels	and	modules)	as	well	as	the	dependencies	among	them.	

Consequently,	the	task	of	a	more	concrete	characterization	of	CQLs	falls	to	other	members	of	the	CQLF	
standard	family.	This	document	(ISO	24623-2,	“CQLF-2”	for	short)	establishes	an	ontology	that	focuses	
on	the	generalized	information	needs	satisfied	by	corpus	queries,	in	the	form	of	a	multi-layer	taxonomy	
against	which	individual	CQLs	can	make	positive	and	negative	conformance	statements.	

Establishing	this	ontology	allows,	on	the	one	hand,	a	fine-grained	comparison	of	the	expressive	power	
of	CQLs,	and,	on	the	other	hand,	it	is	going	to	serve	a	practical	purpose:	as	a	foundation	for	a	platform	
where	developers	can	enter	conformance	statements,	and	where	end	users	can	see	which	CQL	to	turn	
to	in	order	to	ensure	that	their	search	needs	get	satisfied.	

ISO	24623-2:2020(E)	

©	ISO	2020	–	All	rights	reserved	 1	

Language	resource	management	—	Corpus	query	lingua	franca	
(CQLF)	—	Part	2:	Ontology	

1 Scope	

This	 document	 defines	 an	 ontology	 for	 fine-grained	 description	 of	 the	 expressive	 power	 of	 CQLs	 in	
terms	of	search	needs.	The	ontology	consists	of	three	interrelated	taxonomies	of	concepts:	a)	the	CQLF	
Metamodel	(a	formalization	of	CQLF-1),	b)	the	Expressive	Power	taxonomy,	which	describes	different	
facets	of	the	expressive	power	of	CQLs,	and	c)	a	taxonomy	of	CQLs.	

The	 normative	 parts	 of	 this	 document	 comprise	 a)	 the	 taxonomy	 of	 the	 CQLF	 Metamodel,	 b)	 the	
Functionality	layer	of	the	Expressive	Power	taxonomy,	c)	the	structure	of	the	layers	of	the	Expressive	
Power	taxonomy	and	the	relationships	between	them,	in	the	form	of	subsumption	assertions,	as	well	as	
d)	the	formalization	of	the	linkage	between	the	CQL	taxonomy	and	the	Expressive	Power	taxonomy,	in	
the	form	of	positive	and	negative	conformance	statements.	

This	document	does	not	provide	a	normative	listing	of	the	middle	and	bottom	layer	of	the	Expressive	
Power	taxonomy	(called	Frames	and	Use	Cases,	respectively).	An	exhaustive	inventory	of	the	concepts	
at	 these	 two	 layers	 is	 not	 possible	 due	 to	 the	 fact	 that	 CQLs	 differ	 widely	 in	 the	 complexity	 of	 the	
supported	 combinations	 of	 Functionalities	 and	 that	 new	 CQLs	 can	 be	 created	 offering	 additional	
combinations.	 Frames	 and	 Use	 Cases	 are	 expected	 to	 be	 filled	 in	 through	 a	 moderated	 community	
process,	driven	by	CQL	developers	as	well	as	end	users.	An	informative	annex	to	this	document	contains	
a	sample	of	Frames	and	Use	Cases	together	with	conformance	statements	linking	them	with	the	CQP	[5]	
and	ANNIS	[7]	query	languages.	

2 Normative	references	

The	 following	 documents	 are	 referred	 to	 in	 the	 text	 in	 such	 a	way	 that	 some	 or	 all	 of	 their	 content	
constitutes	 requirements	 of	 this	 document.	 For	 dated	 references,	 only	 the	 edition	 cited	 applies.	 For	
undated	references,	the	latest	edition	of	the	referenced	document	(including	any	amendments)	applies.	

ISO/IEC	10646,	Information	technology	—	Universal	Coded	Character	Set	(UCS)	

ISO	24612,	Language	resource	management	—	Linguistic	annotation	framework	(LAF)	

ISO	24623-1,	 Language	 resource	 management	—	 Corpus	 query	 lingua	 franca	 (CQLF)	—	 Part	1:	
Metamodel	

Motik,	 B.,	 Patel-Schneider,	 Peter	 F.,	 and	Parsia,	 B.	 (2012).	OWL	2	Web	Ontology	 Language:	 Structural	
Specification	and	Functional-Style	Syntax	(Second	Edition).	W3C	Recommendation,	11	December	2012.	
(Latest	version	available	at	http://www.w3.org/TR/owl2-syntax/.)	

3 Terms	and	definitions	

For	the	purposes	of	this	document,	the	terms	and	definitions	given	in	ISO	24612,	ISO	24623-1	and	the	
following	apply.	

ISO	and	IEC	maintain	terminological	databases	for	use	in	standardization	at	the	following	addresses:	

—	 ISO	Online	browsing	platform:	available	at	https://www.iso.org/obp	

ISO/CD	24623-2:2020(E)	

2	 ©	ISO	2020	–	All	rights	reserved	

—	 IEC	Electropedia:	available	at	http://www.electropedia.org/	

3.1	
CQLF	module	
subcomponent	of	a	CQLF	level,	defined	with	reference	to	a	specified	data	model	characteristic	

Note	1	to	entry:	CQLF	Metamodel	currently	distinguishes	three	modules	within	CQLF	Level	1,	Linear	(plain-text,	
segmentation,	 and	 simple	 annotation),	 and	 three	 modules	 within	 CQLF	 Level	 2,	 Complex	 (hierarchical,	
dependency,	and	containment).	

[SOURCE:	ISO	24623-1:2018	[5],	3.8]	

3.2	
Functionality	
label	 for	 a	 concept	 in	 the	 CQLF	Ontology	 that	 represents	 a	 family	 of	 capabilities	 contributing	 to	 the	
expressive	power	of	a	CQL,	formulated	at	a	general	level	and	linked	to	one	or	more	CQLF	modules	

3.3	
Frame	
label	for	a	concept	in	the	CQLF	Ontology	that	represents	a	typical	search	need	of	end	users,	understood	
as	one	facet	of	the	expressive	power	of	CQLs	

Note	1	to	entry:	Most	Frames	arise	from	the	specialization	of	a	Functionality	and/or	the	combination	of	multiple	
Functionalities.	

3.4	
Use	Case	
label	for	a	concept	in	the	CQLF	Ontology	that	represents	a	concrete	instantiation	of	a	Frame,	for	which	it	
can	be	determined	unambiguously	whether	a	given	query	expression	satisfies	the	search	need	or	not	

Note	1	to	entry:	Use	Cases	are	often	parameterized,	i.e.	they	contain	variable	elements.	Parameterized	Use	Cases	
are	satisfied	by	parameterized	query	expressions.	

3.5	
CQL	
corpus	query	language	
formal	 language	designed	 to	 retrieve	 specific	 information	 from	(large)	 language	data	 collections,	 and	
thereby	incorporate	certain	abstractions	over	commonly	shared	data	models	that	make	it	possible	for	
the	end	user	(or	user	agents)	to	address	parts	of	those	data	models	

Note	1	to	entry:	A	CQL	defines	a	syntactic	notation	for	query	expressions	and	the	corresponding	search	semantics,	
i.e.	an	intensional	specification	of	the	intended	result	set.	For	most	current	CQLs,	semantics	are	implicitly	defined	
by	a	particular	implementation.	

[SOURCE:	ISO	24623-1:2018	[5],	3.4,	modified	–	"user"	was	replaced	with	"end	user"	 in	the	definition	
and	Note	1	to	entry	was	added.]	

3.6	
search	need	
information	pattern	 that	 an	 end	user	wants	 to	 locate	 in	 a	 corpus,	 based	on	 the	primary	data	 stream	
and/or	simple	or	complex	annotation	

3.7	
end	user	
agent	who	uses	a	CQL	to	satisfy	his	or	her	search	needs	

ISO	24623-2:2020(E)	

©	ISO	2020	–	All	rights	reserved	 3	

Note	1	to	entry:	This	can	be	done	via	an	interactive	GUI,	a	command-line	tool,	programmatically	via	some	API,	or	
by	a	software	program	developed	by	the	end	user.	

3.8	
query	expression	
string	that	is	syntactically	valid	in	a	given	CQL	and	can	be	executed	to	return	a	result	set	

Note	1	to	entry:	Query	expressions	are	often	parameterized	with	variable	elements.	No	formal	specification	of	the	
parameter	substitution	procedure	is	attempted,	but	entries	for	parameterized	query	expressions	in	the	ontology	
are	required	to	include	informal	descriptions	of	the	range	of	admissible	values	and	any	transformations	required.	

3.9	
parameter	
variable	element	in	a	query	expression	or	in	the	description	of	a	search	need	

3.10	
positive	conformance	statement	
assertion	that	a	given	CQL	supports	a	given	Use	Case	by	means	of	a	query	expression	

3.11	
negative	conformance	statement	
assertion	that	a	given	CQL	cannot	support	a	given	Use	Case,	Frame	or	Functionality	

Note	1	to	entry:	Negative	conformance	is	due	to	technical	unavailability	of	specific	capabilities	 in	the	respective	
CQL	or	limitations	on	the	complexity	of	query	expressions.	

3.12	
CQL	capability	
corpus	query	language	capability	
facility	provided	by	CQLs	to	meet	a	specific	aspect	of	search	needs	

3.13	
layer	
totality	of	concepts	at	the	same	level	of	abstraction	in	the	CQLF	Ontology	

EXAMPLES:	Functionalities,	Frames,	Use	Cases	

3.14	
token	
non-empty	contiguous	sequence	of	graphemes	or	phonemes	in	a	document	

[SOURCE:	ISO	24611:2012,	3.21,	modified	—	The	note	was	deleted.]	

4 Motivation	and	aims	(informative)	

CQLs	 differ	 widely	 in	 their	 basic	 sets	 of	 capabilities.	Whereas	 some	 are	 restricted	 to	 rather	 specific	
application	 scenarios,	 others	 are	 able	 to	 cover	 a	wider	variety	of	 applications	 and	 search	needs.	 It	 is	
therefore	 both	 the	 quality	 and	 the	 quantity	 of	 CQL	 capabilities	 –	 as	 well	 as	 the	 degree	 of	 their	
combination	 –	 that	 determine	 the	 expressive	power	 of	 a	 CQL.	 The	CQLF	Ontology	 is	 not	 intended	 to	
articulate	all	 the	possible	combinations	of	 capabilities	unless	 these	are	 justified	by	genuine	usage.	 Its	
aim	 is	 to	 provide	 representative	 categories	 for	 typical	 search	 needs	 within	 a	 taxonomy	 of	 CQL	
capabilities.	

ISO/CD	24623-2:2020(E)	

4	 ©	ISO	2020	–	All	rights	reserved	

Yet	another	important	aspect	is	the	degree	of	explication	that	a	CQL	delivers.	Some	CQLs	can	be	able	to	
express	a	particular	 search	need	 in	a	 condensed	and	highly	 specialized	manner,	while	others	 rely	on	
complex	combinations	of	a	few	elementary	capabilities.	The	CQLF	Ontology	leverages	information	from	
CQLs	 with	 a	 more	 explicit	 formalization	 of	 capabilities	 in	 order	 to	 create	 a	 systematic	 taxonomy	 of	
search	needs	and	thus	be	able	to	classify	CQLs	of	rather	implicit	formalization.	Their	respective	degree	
of	 explication	 is	 visible	 in	 the	 parameterized	query	 expressions	 included	 in	 all	 positive	 conformance	
statements.	

This	document	defines	the	structure	of	an	ontology	representing	CQL	capabilities	and	search	needs	in	a	
taxonomy	 consisting	of	 three	 layers	 of	 varying	degrees	of	 abstraction,	 as	well	 as	 the	 conformance	of	
individual	CQLs	to	this	central	taxonomy.	

End	users	navigate	the	taxonomy	starting	from	a	compact	layer	of	CQLF	capabilities.	Selecting	a	subset	
of	relevant	capabilities	allows	them	to	locate	relevant	search	needs	in	the	middle	layer	of	the	taxonomy	
efficiently,	 and	 then	 choose	 a	 concrete	 instantiation	 of	 the	 search	 need	 that	 is	 closest	 to	 their	
requirements	 in	 the	bottom	 layer.	This	 instantiation	 links	 to	 all	CQLs	 that	 satisfy	 the	 selected	 search	
need	and	provides	a	parameterized	query	expression	for	each	CQL.	

The	definition	of	 the	structure	of	 the	CQLF	Ontology	as	described	 in	 this	document	 is	expected	 to	be	
instantiated	 and	 expanded	 in	 a	 dynamic	 community-based	 project	 (see	 Annex	 B).	 The	 permissive	
architecture	and	terminology	defined	by	CQLF-2	enables	research	groups	to	extend	the	relevant	parts	
of	the	ontology	with	further	CQL	capabilities	and	search	needs.	

CQLF-2	is	primarily	intended	for	the	following	application	scenarios:	

• describing	the	scope	and	capabilities	of	a	given	CQL,	in	terms	of	conformance	statements	against	
the	CQLF	Ontology	(by	the	CQL	developers);	

• comparing	different	CQLs	with	respect	to	their	ability	to	meet	typical	search	needs;	
• identifying	 suitable	 CQLs	 and	 query	 tools	 that	 support	 (combinations	 of)	 CQL	 capabilities	

required	by	an	end	user,	together	with	examples	of	the	respective	query	syntax;	and	
• guiding	 the	 development	 of	 new	 CQLs	 and	 query	 tools	 by	 building	 an	 inventory	 of	 complex	

search	needs	that	are	important	for	the	community	(by	end	users).	

5 CQLF	Ontology	

5.1 OWL	DL	formalism	

The	 taxonomic	 framework	of	 the	CQLF	Ontology	 is	modelled	 in	OWL	2	DL	 [6]	–	a	dialect	of	 the	Web	
Ontology	 Language	 (OWL)	 based	 on	 the	 family	 of	 description	 logics	 (hence	 DL,	 see	 [8])	 as	 a	 formal	
framework.	 All	 definitions	 and	 requirements	 of	 the	 OWL	 2	 Specification	 shall	 be	 followed.	 The	
normative	 representation	and	exchange	 format	 for	 the	CQLF	Ontology	 is	RDF/XML	 [9,	 10].	All	 labels	
and	annotations	shall	be	represented	as	sequences	of	Unicode	code	points,	following	ISO/IEC	10646.	

OWL	2	DL	furnishes	developers	with	a	set	of	tools	for	a)	stating	concept	hierarchies	and	membership	of	
individuals	 and	 b)	 defining	 highly	 expressive	 property	 restrictions.	 In	 particular,	 the	 CQLF	Ontology	
makes	use	of	the	AnnotationProperty	construct	of	OWL	DL	in	order	to	associate	additional	information	
with	concepts	and	individuals.	

For	better	readability,	CQLF	Ontology	axioms	are	provided	in	DL	notation	in	Clauses	5	and	6;	a	link	to	
the	complete	RDF/XML	serialization	of	the	normative	part	of	the	ontology	can	be	found	in	Clause	7.	

Before	 turning	 to	 the	 DL	 specification	 of	 the	 CQLF	 Ontology,	 a	 few	 relevant	 DL	 notions	 will	 be	
introduced	[8]:	

ISO	24623-2:2020(E)	

©	ISO	2020	–	All	rights	reserved	 5	

• concept	 inclusion	 ⊑:	 This	 operator	 asserts	 a	 logical	 subsumption	 relationship	 between	 two	
concept	expressions.	
EXAMPLE	1:	A	⊑	B	asserts	that	A	covers	either	a	subset	or	the	entire	set	of	individuals	contained	
in	B;	A	is	also	said	to	be	subsumed	by	B.	

• concept	equivalence	≡:	This	operator	asserts	an	equivalence	between	two	concept	expressions.	
EXAMPLE	2:	A	≡	B	asserts	that	A	covers	exactly	the	same	set	of	individuals	as	B.	

• intersection/conjunction	⊓:	This	operator	denotes	the	intersection	of	two	concept	expressions,	
i.e.	the	individuals	contained	in	both	concept	expressions.	
Note:	A	⊑	B	⊓	C	asserts	that	A	is	subsumed	by	B	as	well	as	C;	it	is	equivalent	to	the	assertions	A	
⊑	B	and	A	⊑	C		

• union/disjunction	 ⊔:	 This	 operator	 denotes	 the	 union	 of	 two	 class	 expressions,	 i.e.	 the	
individuals	contained	in	either	or	both	of	the	concept	expressions.	

• top	concept	⊤:	denotes	the	set	of	all	individuals	in	the	domain,	i.e.	the	entire	universe.	Thing,	the	
root	class.	

• bottom	concept	⊥:	denotes	the	empty	set	of	individuals	in	the	domain.	Nothing,	the	empty	class.	
• concept	assertion	∈:	This	operator	asserts	that	an	individual	belongs	to	a	concept.	Also	known	as	

class	assertion	because	concepts	represent	classes	(see	T-Box	below).	
EXAMPLE	3:	x	∈	A	asserts	that	the	individual	x	is	a	member	of	the	concept	A.	

• A-Box:	 The	 domain	 of	 interest	 is	 spanned	 by	 a	 universe	 of	 individuals	 which	 serve	 as	 the	
fundamental	 atoms	 for	 the	 ontology	 of	 what	 shall	 be	 modelled.	 They	 become	 members	 of	
concepts	through	concept	assertions	(also	referred	to	as	A-Box	axioms)	and	implicitly	through	
the	subsumption	relations	expressed	by	concept	inclusion	assertions	(in	the	T-Box).	

• T-Box:	 Concepts	 are	 represented	within	 the	 terminological	 box	 (T-Box).	 They	 are	 classes	 into	
which	individuals	are	organized	by	the	A-Box	axioms.	The	T-Box	thus	provides	a	vocabulary	of	
concepts	 and	 a	 rule	 set	 of	 hierarchical	 relations	 between	 them	 (“is-a”	 relations	 expressed	 by	
concept	 inclusion	axioms).	 Ideally,	 sibling	 categories	 cover	a	mutually	 exclusive	 space	of	 sub-
categories	and/or	individuals.	

5.2 Structure	of	the	ontology	

The	T-Box	of	the	CQLF	Ontology	consists	of	three	separate	taxonomies	of	concepts.	The	main	taxonomy	
describes	different	facets	of	the	expressive	power	of	CQLs.	It	is	called	Expressive	Power	taxonomy	and	
divided	into	three	layers.	

Concepts	 in	 the	 top	 layer	 are	 called	 Functionalities.	 They	 represent	 (families	 of)	 individual	 search	
capabilities	 that	 can	be	provided	by	CQLs	at	 a	 general	 level.	 Functionalities	 serve	as	 entry	points	 for	
navigating	 the	main	 taxonomy.	 Functionalities	 belong	 to	 the	 normative	 part	 of	 the	 ontology	 and	 are	
defined	in	5.4.	

Concepts	in	the	middle	layer	are	called	Frames.	They	represent	typical	search	needs	of	end	users,	which	
often	 involve	combinations	of	multiple	Functionalities,	at	a	relatively	abstract	 level.	For	every	Frame,	
subsumption	assertions	shall	indicate	which	Functionalities	are	required	for	the	search	need.	A	Frame	A	
can	 also	 be	 subsumed	 by	 another	 Frame	 A'	 if	 A	 extends	 the	 search	 need	 represented	 by	 A'.	 The	
normative	part	of	 the	ontology	does	not	 include	any	 instances	of	Frames;	 the	 structure	of	 the	Frame	
layer	is	defined	in	5.5.	

Concepts	 in	 the	 bottom	 layer	 are	 called	 Use	 Cases.	 They	 represent	 parameterized	 instantiations	 of	
Frames,	 which	 should	 be	 sufficiently	 concrete	 so	 that	 it	 is	 possible	 to	 determine	 unambiguously	
whether	a	given	CQL	can	satisfy	a	given	Use	Case.	For	every	Use	Case,	a	 subsumption	assertion	shall	
indicate	 which	 Frame	 is	 instantiated	 by	 the	 Use	 Case.	 There	 can	 also	 be	 subsumption	 assertions	 to	
several	Frames	as	well	as	to	other	Use	Cases.	The	normative	part	of	the	ontology	does	not	include	any	
instances	of	Use	Cases;	the	structure	of	the	Use	Case	layer	is	defined	in	5.6.	

ISO/CD	24623-2:2020(E)	

6	 ©	ISO	2020	–	All	rights	reserved	

The	second	 taxonomy	of	concepts	 formalizes	 the	CQLF	Metamodel	defined	by	CQLF-1	(ISO	24623-1).	
Subsumption	 assertions	 link	 all	 Functionalities	 to	 the	 CQLF	 Metamodel.	 Both	 the	 CQLF	 Metamodel	
taxonomy	(defined	in	5.3)	and	the	subsumption	assertions	(defined	in	5.4)	belong	to	the	normative	part	
of	the	ontology.	

The	third	taxonomy	of	concepts	represents	individual	CQLs	whose	expressive	power	is	described	with	
respect	 to	 the	CQLF	Ontology.	 It	 shall	 have	 a	 flat	 structure	without	 subsumption	 assertions	between	
different	CQLs.	The	normative	part	of	the	ontology	does	not	include	any	instances	of	CQLs;	the	structure	
of	the	taxonomy	is	defined	in	5.7.	

Individuals	 in	 the	 A-Box	 are	 positive	 conformance	 statements	 in	 the	 form	 of	 parameterized	 query	
expressions.	Concept	assertions	shall	assign	each	individual	to	a	CQL	concept	(representing	the	CQL	it	is	
formulated	in)	and	to	a	Use	Case	concept	(representing	the	search	need	it	satisfies).	The	normative	part	
of	the	ontology	does	not	include	any	individuals,	i.e.	its	A-Box	is	empty.	A	CQL	can	also	make	negative	
conformance	statements	to	declare	that	 it	cannot	satisfy	specific	Use	Cases,	Frames	or	Functionalities	
because	of	its	design	limitations.	As	general	disjunction	assertions	for	concepts,	negative	conformance	
statements	 are	 part	 of	 the	 T-Box.	 If	 neither	 a	 positive	 nor	 a	 negative	 conformance	 statement	 exists	
between	a	CQL	and	a	given	Use	Case,	it	shall	be	considered	undetermined	whether	or	not	the	CQL	can	
satisfy	 the	 corresponding	 search	 need.	 Positive	 and	 negative	 conformance	 statements	 are	 further	
defined	in	Clause	6.	

No	 concept	 or	 subsumption	 assertion	 shall	 be	made	 that	would	 lead	 to	 logical	 inconsistencies	 in	 the	
ontology.	

The	overall	structure	of	the	CQLF	Ontology	is	illustrated	in	Figure	1.	

ISO	24623-2:2020(E)	

©	ISO	2020	–	All	rights	reserved	 7	

	

Figure	1	—	General	structure	of	the	CQLF	Ontology	

5.3 CQLF	Metamodel	

The	theoretical	concept	of	modules	as	developed	by	[4]	and	standardized	in	the	context	of	CQLF-1	(ISO	
24623-1)	is	formalized	by	the	CQLF	Metamodel	taxonomy.	It	consists	of	the	concepts	and	subsumption	
assertions	defined	below.	Each	concept	is	identified	by	its	label	(as	rdfs:label	annotation),	followed	by	
all	its	subsumption	assertions	within	the	taxonomy.	

	

ISO/CD	24623-2:2020(E)	

8	 ©	ISO	2020	–	All	rights	reserved	

Abstract	root	concepts:	

• Metamodel	
NOTE	1:	This	is	the	abstract	root	concept	of	the	CQLF	Metamodel	taxonomy.	

• Level	⊑	Metamodel	
NOTE	2:	This	is	the	abstract	root	concept	of	all	CQLF	levels.	

• Module	⊑	Metamodel	
NOTE	3:	This	is	the	abstract	root	concept	of	all	CQLF	modules.	

CQLF	levels:	

• Linear	⊑	Level	
NOTE	4:	plain-text	search	as	well	as	search	in	segmented	data	

• Complex	⊑	Level	
NOTE	5:	search	in	data	annotated	with	hierarchical	structures	and/or	dependency	information,	
or	querying	simple	annotations	by	means	of	containment-based	queries	

• Concurrent	⊑	Level	
NOTE	6:	 search	 in	 multiple	 concurrent	 (overlapping,	 intersecting	 and	 often	 conflicting)	
annotations	built	upon	a	single	data	stream	

CQLF	modules:	

• PlainText	⊑	Module	⊓	Linear	
NOTE	7:	segmentation-independent	string	search	

• SimpleAnnotation	⊑	Module	⊓	Linear	
NOTE	8:	 segmentation-based	 search	 for	 annotations	 describing	 primary	 data	 stream;	
understood	 more	 generally	 as	 search	 for	 annotations	 of	 individual	 objects	 in	 the	 context	 of	
CQLF-2	

• Segmentation	⊑	Module	⊓	Linear	
NOTE	9:	search	for	segmental	annotation,	in	particular	tokens	and	token	sequences	

• Hierarchical	⊑	Module	⊓	Complex	
NOTE	10:	tree-based	representations,	e.g.	for	phrase-structure	description	

• Dependency	⊑	Module	⊓	Complex	
NOTE	11:	 identification	of	 relationships	 in	which	objects	 function	as	nodes	 linked	by	directed	
arcs	

• SpanContainment	⊑	Module	⊓	Complex	
NOTE	12:	 non-recursive	 simplified	 hierarchical	 relationships	 encoded	 as	 character	 span	
containment	

• Paradigmatic	⊑	Module	⊓	Concurrent	
NOTE	13:	different	annotation	layers	provide	data	packages	describing	the	same	location	

• Overlapping	⊑	Module	⊓	Concurrent	
NOTE	14:	 concurrent	 annotations	 built	 upon	 character	 spans	 which	 overlap	 in	 their	 start	
and/or	end	offsets	

As	 the	 coarsest	 categories	 of	 corpus	 query	 classification,	 CQLF	 modules	 provide	 a	 prior	 global	 and	
maximally	comprehensive	framework	for	the	organization	of	search	needs	and	CQLs.	The	relationship	
between	the	Metamodel	taxonomy	and	the	Expressive	Power	taxonomy	is	not	strictly	hierarchical.	For	
this	reason,	Functionalities	rather	than	CQLF	modules	should	be	used	as	entry	points	for	navigation	of	
the	ontology.	

ISO	24623-2:2020(E)	

©	ISO	2020	–	All	rights	reserved	 9	

5.4 Functionalities	

Functionalities	represent	individual	capabilities	of	CQLs	at	a	very	general	level.	They	form	the	top	layer	
of	the	Expressive	Power	taxonomy	and	serve	as	navigational	entry	points.	Functionalities	are	connected	
to	CQLF	modules	via	subsumption	assertions.	

Some	Functionalities	(such	as	PartialMatch)	apply	to	multiple	CQLF	modules	They	are	not	subsumed	by	
any	of	these	modules	but	rather	by	their	disjunction,	 indicated	by	an	assertion	of	the	form	A	⊑	B	⊔	C	
below.	For	this	reason,	CQLF	modules	are	not	a	suitable	entry	point	for	navigation	of	the	ontology.	

The	 layer	 of	 Functionalities	 consists	 of	 the	 following	 concepts,	 descriptions	 and	 subsumption	
assertions.	 Each	 Functionality	 concept	 is	 identified	 by	 its	 label	 (as	 rdfs:label	 annotation)	 and	 a	
subsumption	 assertion	 to	 the	 abstract	 root	 concept	 Functionality,	 followed	 by	 a	 description	 of	 the	
search	 need	 in	 italics	 (as	 cqlf:searchNeed	 annotation)	 and	 further	 subsumption	 assertions	 that	
connect	the	Functionality	to	the	Metamodel	taxonomy.	

Abstract	root	concepts:	

• ExpressivePower	
• Functionality	⊑	ExpressivePower	

Functionalities:	

• Annotation	⊑	Functionality	
find	individual	objects	based	on	their	linguistic	annotation	
Annotation	⊑	SimpleAnnotation	⊔	Paradigmatic	

• ConstraintCombination	⊑	Functionality	
Boolean	operators	for	combining	constraints	on	objects	
ConstraintCombination	⊑	Metamodel		
EXAMPLE	1:	conjunction	(&),	disjunction	(|),	negation	(!,	!=),	difference	(-)	

• Containment	⊑	Functionality	
containment	of	an	object	in	a	specific	context	
Containment	⊑	SpanContainment	⊔	Overlapping	

• ExternalResource	⊑	Functionality	
reference	to	externally	encoded	structured	data	
ExternalResource	⊑	Metamodel	
EXAMPLE	2:	reference	from	annotation	object	to	dictionary,	database	of	speakers,	etc.	

• FuzzySearch	⊑	Functionality	
approximate	string	matching	
FuzzySearch	⊑	Segmentation	⊔	PlainText	⊔	SimpleAnnotation	

• GraphRelation	⊑	Functionality	
relationships	of	objects	as	nodes	linked	by	directed	arcs	
GraphRelation	⊑	Dependency	

• LinearRelation	⊑	Functionality	
horizontal	relationships	of	objects	
LinearRelation	⊑	Segmentation	⊔	PlainText	
EXAMPLE	3:	precedence/co-occurrence	of	objects	

• MatchingStrategy	⊑	Functionality	
define	specific	matching	modality	
MatchingStrategy	⊑	Metamodel	
EXAMPLE	4:	match	 the	 first	object	 in	a	sequence,	match	 the	whole	span	between	two	objects,	
greedy	vs.	non-greedy	search	

• Metainformation	⊑	Functionality	
query	metainformation	associated	with	the	primary	data	

ISO/CD	24623-2:2020(E)	

10	 ©	ISO	2020	–	All	rights	reserved	

Metainformation	⊑	Metamodel	
EXAMPLE	5:	text	genre,	publication	date,	author	sex	

• PartialMatch	⊑	Functionality	
match	plain	text	or	linguistic	annotation	value	against	a	generalized	pattern	
PartialMatch	⊑	PlainText	⊔	SimpleAnnotation	
EXAMPLE	6:	prefix/suffix	search,	match	against	regular	expression	

• PlainTextSearch	⊑	Functionality	
find	segmentation-independent	strings	
PlainTextSearch	⊑	PlainText	
EXAMPLE	7:	“[...]ad	a	little	la[...]”,	“[...]mber	47	said	to	num[...]”	

• Position	⊑	Functionality	
relative	position	of	an	object	with	respect	to	another	
Position	⊑	PlainText	⊔	Segmentation	⊔	SpanContainment	⊔	Hierarchical	⊔	Dependency	
EXAMPLE	8:	containment	at	left,	distance	between	two	objects	

• Quantification	⊑	Functionality	
numeric	range	specification	on	a	constraint	
Quantification	⊑	Metamodel	
EXAMPLE	9:	at	least	N,	at	most	M	

• Repetition	⊑	Functionality	
multiple	occurrence	of	an	object	
Repetition	⊑	PlainText	⊔	Segmentation	

• Sensitivity	⊑	Functionality	
treatment	of	special	character	features	
Sensitivity	⊑	PlainText	⊔	Annotation	
EXAMPLE	10:	case-insensitive,	ignore	diacritics	

• Size	⊑	Functionality	
specify	the	size	of	an	object	
Size	⊑	PlainText	⊔	Segmentation	⊔	Hierarchical	⊔	Dependency	
EXAMPLE	11:	string	length,	number	of	objects	in	sequence,	arity	of	tree	branch	or	graph	vertex	

• TreeRelation	⊑	Functionality	
vertical	relationships	of	objects	as	nodes	linked	by	hierarchically	directed	arcs	
TreeRelation	⊑	Hierarchical	
EXAMPLE	12:	domination	of	an	object	by	another,	common	parent	node	

The	extension	of	a	Functionality	F	is	the	set	of	all	parameterized	query	expressions	that	involve	F.	The	
Functionality	layer	shall	cover	the	entire	universe	of	corpus	query	expressions:	

Functionality	≡	⊤	

In	other	terms,	every	individual	x	shall	be	a	member	of	some	Functionality	F.	

5.5 Frames	

Frames	represent	typical	search	needs	at	an	intermediate	degree	of	abstraction.	They	involve	more	or	
less	 complex	 combinations	 of	 Functionalities.	 All	 Frames	 shall	 be	 subsumed	 by	 the	 abstract	 root	
concept	of	the	layer:	

• Frame	⊑	ExpressivePower	

Every	Frame	A	 shall	make	additional	 subsumption	assertions	 towards	one	or	more	Functionalities	Fi	
and/or	other	Frames	Aj:	

ISO	24623-2:2020(E)	

©	ISO	2020	–	All	rights	reserved	 11	

A	⊑	Frame	

A	⊑	F1	⊓	F2	⊓	…	⊓	Fn	⊓	A1	⊓	…	⊓	Ak	

These	assertions	shall	ensure	that	a	direct	or	indirect	subsumption	relation	holds	between	A	and	a	
given	Functionality	F	if	and	only	if	F	is	a	substantial	element	of	the	search	need	represented	by	A.	
Likewise,	a	direct	or	indirect	subsumption	relation	can	hold	between	A	and	another	Frame	A'	if	A	
extends	the	search	need	represented	by	A'.	

Each	Frame	A	shall	be	given	a	short	descriptive	label	(as	rdfs:label	annotation),	which	can	be	written	in	
an	abstract,	formal	notation,	as	well	as	a	clear	human-readable	description	of	the	search	need	(as	
cqlf:searchNeed	annotation).	

The	extension	of	a	Frame	A	is	the	set	of	all	parameterized	query	expressions	x	that	satisfy	the	search	
need	of	some	Use	Case	that	instantiates	A	(see	5.5).	The	Frame	layer	shall	cover	the	entire	universe	of	
corpus	query	expressions:	

Frame	≡	⊤	

In	other	terms,	every	individual	x	shall	be	a	member	of	some	Frame	A.	

NOTE	 Some	Frames	can	involve	only	a	single	Functionality.	Such	simple	Frames	describe	typical	specializations	
of	 the	 Functionality,	 e.g.	 Frames	 such	 as	 PrefixSuffixMatch	 and	 RegularExpressionMatch	 for	 the	 PartialMatch	
Functionality.	Most	Frames	will	be	complex,	though,	i.e.	they	combine	the	capabilities	of	multiple	Functionalities	
or	the	search	needs	of	multiple	other	Frames.	

See	Annex	A	for	some	illustrative	examples	of	Frame	specifications.	

5.6 Use	Cases	

Use	Cases	are	instantiations	of	Frames.	Each	Use	Case	shall	represent	a	concrete	parameterized	search	
need	that	is	sufficiently	specific	so	that	it	can	be	fully	satisfied	by	a	parameterized	query	expression	(in	
any	CQL	that	conforms	with	the	Use	Case).	

All	Use	Cases	shall	be	subsumed	by	the	abstract	root	concept	of	the	layer:	

• UseCase	⊑	ExpressivePower	

Every	Use	Case	U	shall	also	make	a	subsumption	assertion	towards	the	Frame	A	that	it	instantiates:	

U	⊑	UseCase	

U	⊑	A	

U	can	make	further	subsumption	assertions	to	other	Frames	Ai	but	should	not	do	so	in	most	cases.	

In	order	for	U	to	instantiate	the	Frame	A,	it	shall	involve	all	capabilities	required	by	the	search	need	of	A	
in	 a	non-trivial	manner	and	 combine	 them	 in	 the	 same	way	as	A.	U	 shall	not	 involve	any	 substantial	
further	capabilities	or	combinations.	

EXAMPLE	 Frame	A	represents	a	search	need	that	can	be	paraphrased	as	“find	two	objects	A	and	B	
with	 specific	 annotation	 values	 at	 a	 certain	 linear	 distance”.	 The	 Use	 Case	U	 =	 “find	 word	 form	①	
followed	by	part-of-speech	tag	②	at	a	distance	of	exactly	③	tokens”	is	considered	an	instantiation	of	A.	
However,	the	Use	Case	U1	=	“find	word	form	①	followed	by	some	other	token	at	a	distance	of	exactly	③	
tokens”	is	not	an	instantiation	of	A	because	it	omits	the	annotation	constraint	on	the	second	token;	U2	=	

ISO/CD	24623-2:2020(E)	

12	 ©	ISO	2020	–	All	rights	reserved	

“find	 word	 form	matching	 regular	 expression	①	 followed	 by	 part-of-speech	 tag	②	 at	 a	 distance	 of	
exactly	③	 tokens”	 is	 not	 an	 instantiation	 of	 A	 because	 it	 adds	 the	 capability	 of	 regular	 expression	
matching	(i.e.	the	PartialMatch	Functionality),	which	is	not	involved	in	the	search	need	A.	

Each	 Use	 Case	 U	 shall	 be	 given	 a	 descriptive	 label	 (as	 rdfs:label	 annotation)	 and	 a	 clear	 extended	
description	 of	 the	 search	 need	 (as	 cqlf:searchNeed	 annotation).	 Any	 variable	 element	 of	 the	 search	
need	shall	be	indicated	by	a	parameter	placeholder	in	the	label,	using	a	Unicode	character	in	the	range	
U+2460	 (CIRCLED	 DIGIT	 ONE)	 to	 U+2473	 (CIRCLED	 NUMBER	 TWENTY).	 All	 parameters	 and	 their	
permissible	values	shall	be	described	as	part	of	the	cqlf:searchNeed	annotation.	

The	extension	of	a	Use	Case	U	is	the	set	of	all	parameterized	query	expressions	that	satisfy	the	search	
need	of	U.	The	Use	Case	layer	shall	cover	the	entire	universe	of	corpus	query	expressions:	

UseCase	≡	⊤	

In	other	terms,	every	individual	x	shall	be	a	member	of	some	Use	Case	U.	

See	Annex	A	for	some	illustrative	examples	of	Use	Case	specifications.	

5.7 CQLs	

Concepts	in	the	CQL	taxonomy	represent	individual	corpus	query	languages	whose	expressive	power	is	
to	be	described	with	respect	to	the	CQLF	Ontology.	

Every	CQL	L	shall	be	subsumed	by	the	abstract	root	concept	of	the	taxonomy:	

• CQL	
• L	⊑	CQL	

No	further	subsumption	assertions	shall	be	made,	resulting	in	a	flat	taxonomy	of	independent	concepts.	

Each	 CQL	 L	 shall	 be	 identified	 by	 the	 name	 or	 abbreviation	 it	 is	 commonly	 associated	 with	 (as	
rdfs:label	annotation).	It	shall	also	be	given	a	description	including	precise	version	information	and	a	
reference	to	documentation	of	the	CQL	syntax	(as	cqlf:description	annotation).	

The	extension	of	 a	CQL	L	 is	 the	 set	of	 all	parameterized	query	expressions	 formulated	 in	L.	The	CQL	
taxonomy	shall	cover	the	entire	universe	of	corpus	query	expressions:	

CQL	≡	⊤	

In	other	terms,	every	individual	x	shall	be	a	member	of	some	CQL	L.	

6 Conformance	statements	

6.1 Positive	conformance	statements	

The	 individuals	 x	 in	 the	 A-Box	 of	 the	 CQLF	 Ontology	 are	 parameterized	 query	 expressions.	 Every	
individual	x	shall	make	concept	assertions	towards	the	CQL	L	in	which	it	is	formulated	and	the	Use	Case	
U	it	satisfies:	

x	∈	L	⊓	U	

ISO	24623-2:2020(E)	

©	ISO	2020	–	All	rights	reserved	 13	

In	exceptional	 cases,	 assertions	can	be	made	 for	multiple	CQLs	and	Use	Cases.	No	concept	assertions	
shall	be	made	to	any	other	concepts	in	the	ontology.	

The	individual	x	makes	a	positive	conformance	statement	that	the	expressive	power	of	L	encompasses	
Use	Case	U,	supported	by	the	parameterized	query	expression	as	concrete	evidence.	

NOTE	1	 Positive	conformance	statements	are	only	allowed	with	respect	to	Use	Cases,	which	are	
required	to	be	specific	enough	so	that	a	concrete	query	expression	can	be	formulated	that	satisfies	the	
Use	 Case	 in	 its	 entirety.	 Frames	 are	 too	 general	 for	 positive	 conformance	 statements:	 a	 CQL	 might	
satisfy	some	but	not	all	instantiations	of	a	Frame.	

Each	individual	x	shall	have	the	following	annotations:	

• rdfs:label:	 The	 parameterized	 query	 expression,	 which	 shall	 use	 the	 same	 parameter	
placeholders	 as	 corresponding	 parameters	 in	 the	 satisfied	 Use	 Case	U.	 The	 query	 expression	
shall	be	formulated	in	such	a	way	that	parameter	values	can	be	inserted	by	string	substitution;	
any	transformations	required	shall	be	described	in	the	cqlf:parameters	annotation.	

	 	 NOTE	2	 Parameter	placeholders	are	Unicode	characters	 in	the	range	U+2460	(CIRCLED	
	 	 DIGIT	ONE)	to	U+2473	(CIRCLED	NUMBER	TWENTY),	see	5.5.	

• cqlf:parameters:	 Detailed	 information	 on	 permissible	 values	 for	 each	 parameter	 as	 well	 as	
possible	transformations	required	before	substituting	the	parameter	in	the	query	expression.	

	 	 EXAMPLE	1	 For	the	parameterized	CQP	[5]	query	expression	[lemma = "①"],	the	
	 	 cqlf:parameters	annotation	might	state	that	parameter	①	is	a	regular	expression	in	PCRE		
	 	 syntax,	that	it	is	automatically	anchored	at	the	start	and	end	of	the	annotation	string,	and	that	
	 	 double	quotes	(QUOTATION	MARK)	shall	be	escaped	by	reduplication	(i.e.	by	substituting	"		
	 	 with	"").	

• cqlf:example:	A	fully	realized	example	of	the	query	expression	with	all	parameters	substituted	
by	arbitrarily	chosen	values,	so	that	it	can	directly	be	executed	in	an	implementation	of	CQL	L.	

Further	 information	 and	 comments	 about	 the	 parameterized	 query	 expression	 can	 be	 provided	 as	
rdfs:comment	annotation.	

EXAMPLE	2	 See	Annex	A	for	some	illustrative	examples	of	positive	conformance	statements.	

6.2 Negative	conformance	statements	

Negative	conformance	statements	document	missing	capabilities	F	of	a	CQL	L,	as	well	as	known	design	
limitations	which	make	it	impossible	to	satisfy	a	particular	Frame	A	or	Use	Case	U.	Formally,	they	assert	
that	L	and	F	(or	A	or	U,	respectively)	are	disjoint	concepts.	

If	L	does	not	have	the	capability	represented	by	a	Functionality	F,	the	assertion	

L	⊓	F	≡	⊥	

shall	be	made.	

If	L	cannot	support	any	instantiation	of	a	Frame	A	because	of	its	design	limitations,	the	assertion	

L	⊓	A	≡	⊥	

shall	be	made	(unless	it	is	already	implied).	

ISO/CD	24623-2:2020(E)	

14	 ©	ISO	2020	–	All	rights	reserved	

If	L	is	known	not	to	satisfy	a	Use	Case	U	in	its	entirety,	the	assertion	

L	⊓	U	≡	⊥	

shall	be	made	(unless	it	is	already	implied).	

NOTE	1	 As	 a	 logical	 consequence	 of	 the	 negative	 conformance	 statement	 L	 ⊓	 F	 ≡	 ⊥,	 it	 is	
impossible	 for	 L	 to	 satisfy	 any	 Frame	 or	 Use	 Case	 subsumed	 by	 F.	 Explicit	 negative	 conformance	
statements	 against	 such	 Frames	 and	 Use	 Cases	 are	 redundant	 and	 should	 not	 be	made.	 As	 a	 logical	
consequence	 of	L	⊓	A	≡	⊥,	 it	 is	 impossible	 for	L	 to	 satisfy	 any	Use	Case	 instantiating	A,	 and	 explicit	
negative	conformance	statements	against	such	Use	Cases	should	not	be	made.	 If	L	⊓	U	≡	⊥	 (whether	
stated	explicitly	or	implied),	there	can	never	be	a	positive	conformance	statement	x	∈	L	⊓	U	because	it	
would	create	a	logical	inconsistency	in	the	ontology.	

If	 there	 is	 neither	 positive	 nor	 negative	 conformance	 between	 a	 CQL	L	 and	 a	Use	 Case	U,	 it	 shall	 be	
considered	indeterminate	whether	or	not	F	satisfies	U.	The	description	of	any	CQL	L	with	respect	to	the	
CQLF	Ontology	should	aim	to	cover	all	Use	Cases,	either	in	the	form	of	an	explicit	positive	or	negative	
conformance	statement	or	via	negative	conformance	implied	by	subsumption.	

NOTE	2	 The	 lack	of	a	positive	 conformance	statement	between	L	 and	U	 indicates	either	 that	L	
does	not	satisfy	U	or	that	L	satisfies	U	but	this	fact	has	not	been	documented	yet	in	the	ontology.	The	
latter	situation	is	likely	to	arise	in	a	community	process	when	further	Frames	and	Use	Cases	are	added	
after	the	initial	documentation	of	CQL	L.	Therefore,	the	lack	of	a	positive	conformance	statement	cannot	
be	interpreted	as	negative	conformance.	

7 RDF/XML	serialization	(informative)	

	

A	complete	RDF/XML	serialization	of	the	normative	part	of	the	CQLF	Ontology	is	available	on	GitHub	at	
the	following	URL:	

https://github.com/cqlf-ontology/cqlf/blob/master/templates/CQLF-2.owl	

ISO	24623-2:2020(E)	

©	ISO	2020	–	All	rights	reserved	 15	

Annex	A	
(informative)	

	
Illustrative	examples	of	non-normative	elements	in	the	CQLF	Ontology	

A.1 Example	ontology	

A	larger	example	ontology	is	available	on	GitHub	at	the	following	URL:	

https://raw.githubusercontent.com/cqlf-ontology/cqlf/master/examples/CQLF-2.owl	

The	ontology	fragment	detailed	below	is	visualized	in	Figure	B.1	at	the	end	of	this	annex.	

A.2 Frames	

A.2.1 A1	⊑	Frame	⊓	Annotation	⊓	TreeRelation	

• rdfs:label	=	Annotation(TreeRelation)	
• cqlf:searchNeed	=	tree	relation	with	a	specified	annotation	value	

A.2.2 A2	⊑	Frame	⊓	Annotation	⊓	PartialMatch	

• rdfs:label	=	RegEx(Annotation)	
• cqlf:searchNeed	=	object	with	annotation	value	matching	regular	expression	

A.2.3 A3	⊑	Frame	⊓	A1	⊓	A2	

• rdfs:label	=	RegEx(Annotation(TreeRelation))	
• cqlf:searchNeed	=	tree	relation	with	partially	matched	annotation	value	

A.2.4 A4	⊑	Frame	⊓	Annotation	

• rdfs:label	=	Annotation(Object)	
• cqlf:searchNeed	=	annotation	object	where	a	given	attribute	has	a	specific	value	

A.2.5 A5	⊑	Frame	⊓	TreeRelation	

• rdfs:label	=	Domination(Object,	Object)	
• cqlf:searchNeed	=	dominance	relation	between	two	objects	in	a	tree	

A.2.6 A6	⊑	Frame	⊓	A3	⊓	A4	⊓	A5	

• rdfs:label	=	RegEx(Annotation(Domination))(Annotation(Object),	Annotation(Object))	
• cqlf:searchNeed	 =	 domination	 relation	 with	 functional	 annotation	 matched	 by	 regular	

expression	 between	 two	 tree	 nodes	 with	 specific	 annotation	 values	 (single	 attribute=value	
constraints)	

ISO/CD	24623-2:2020(E)	

16	 ©	ISO	2020	–	All	rights	reserved	

A.3 Use	Cases	

A.3.1 U1	⊑	UseCase	⊓	A6	

• rdfs:label	=	immediate	dominance	matching	regex	①	between	phrase	node	of	category	②	and	
token	with	POS	tag	③		

• cqlf:searchNeed	=	 find	a	phrase	node	A	of	category	②	 in	a	syntactic	parse	 tree	and	a	 token	B	
with	part-of-speech	tag	③	such	that	A	is	the	immediate	parent	of	B	and	the	dominance	relation	
is	annotated	with	a	function	matching	regular	expression	①	

A.4 CQLs	

A.4.1 CQP	⊑	CQL	

• rdfs:label	=	CQP	
• cqlf:description	 =	 Query	 syntax	 of	 the	 corpus	 query	 processor	 (CQP)	 of	 IMS	 Open	 Corpus	

Workbench	 version	 3.5,	 see	 https://cwb.sourceforge.net/.	 Documentation	 is	 provided	 by	 the	
CQP	Query	Language	Tutorial	at	https://cwb.sourceforge.net/files/CQP_Tutorial.pdf.	

A.4.2 ANNIS	⊑	CQL	

• rdfs:label	=	ANNIS	
• cqlf:description	 =	 ANNIS	 Query	 Language	 (AQL)	 version	 3.6,	 see	 https://corpus-

tools.org/annis/.	 Documentation	 is	 provided	 by	 the	 ANNIS	 User	 Guide	 available	 at	
https://korpling.github.io/ANNIS/3.6/user-guide/.	

A.5 Conformance	statements	

A.5.1 Positive	conformance	statement	for	ANNIS	

x1	∈	ANNIS	⊓	U1	

• rdfs:label	=	cat = "②" & pos="③" & #1 >[func=/①/] #2	
• cqlf:parameters	=	

o ①	 is	a	basic	regular	expression,	which	 is	automatically	anchored	at	 the	beginning	and	
end	of	the	annotation	value	

o forward	slashes	in	①	shall	be	escaped	by	backslashes		
o double	quotes	in	②	and	③	shall	be	escaped	by	backslashes	

• cqlf:example	=	cat = "NP" & pos="ADJA" & #1 >[func=/NK.*/] #2	
• rdfs:comment	=	The	precise	flavour	of	regular	expression	syntax	is	not	specified	in	the	ANNIS	

documentation	and	can	be	 implementation-specific.	 It	 is	assumed	that	all	elements	of	POSIX.1	
Basic	Regular	Expression	syntax	are	supported.		

A.5.2 Negative	conformance	statement	for	CQP	

CQP	⊓	TreeRelation	=	⊥	

ISO	24623-2:2020(E)	

©	ISO	2020	–	All	rights	reserved	 17	

NOTE	 CQP	does	not	implement	any	capabilities	corresponding	to	the	TreeRelation	Functionality.	As	a	
consequence,	it	cannot	satisfy	any	Frames	or	Use	Cases	subsumed	by	TreeRelation,	namely	A1,	A3,	A5,	A6	
and	U1	in	the	present	fragment.	

	

Figure	B.1	—	An	example	fragment	of	non-normative	content	in	the	CQLF	Ontology	

ISO/CD	24623-2:2020(E)	

18	 ©	ISO	2020	–	All	rights	reserved	

Annex	B	
(informative)	

	
CQLF	Ontology:	Moderated	community	process	

Recall	 that	 only	 the	 top	 layer	 of	 the	 Expressive	 Power	 taxonomy	 of	 the	 CQLF	 Ontology	 is	 in	 the	
normative	scope	of	this	document.	The	lower	layers	of	Frames	and	Use	Cases	–	as	well	as	conformance	
statements	for	different	CQLs	–	are	expected	to	be	supplied	by	the	community	in	a	moderated	process	
of	extending	the	ontology.	As	an	informative	annex	to	this	document,	an	initial	version	of	the	extended	
ontology,	documenting	 the	CQP	 [5]	 and	ANNIS	 [7]	CQLs,	 is	provided	by	a	GitHub	organization	at	 the	
following	URL:	

https://github.com/cqlf-ontology/	

The	community	is	expected	to	extend	the	ontology	with	new	Frames	and	Use	Cases	but	will	not	be	able	
to	 modify	 or	 retract	 existing	 ones.	 The	 list	 below	 enumerates	 the	 main	 features	 of	 the	 envisioned	
community	process,	on	the	assumption	that	GitHub	will	be	used	as	the	platform.	

• Authentication:	
o via	 GitHub,	 the	 ontology	 can	 only	 be	 edited	 directly	 by	 users	 whose	 accounts	 are	

members	of	the	GitHub	organization	cqlf-ontology;	
o other	users	 can	 submit	 pull	 requests,	 e.g.	with	 conformance	 statements	 for	 a	 new	 (or	

newly	added)	CQL,	or	with	entries	for	new	Frames	and	Use	Cases.	
• Version	control:	all	submissions	are	automatically	recorded	together	with	a	date	stamp	and	the	

account	name	of	the	submitter.	
• Moderation:	members	of	the	GitHub	organization	cqlf-ontology	review	pull	requests	and	ensure	

that	 they	meet	all	 requirements	 laid	down	 in	 the	present	document;	existing	Frames	and	Use	
Cases	will	only	be	modified	or	deleted	in	exceptional	circumstances	by	the	moderators.	

• It	 is	 expected	 that	users	 ensure	 the	well-formedness	of	 the	ontology	with	 their	modifications	
before	they	initiate	a	pull	request.	

• Moderation,	error	reporting	and	the	verification	of	the	submitted	conformance	statements	will	
be	driven	by	the	ticketing	system	automatically	coordinated	with	pull	requests.	

ISO	24623-2:2020(E)	

©	ISO	2020	–	All	rights	reserved	 19	

Bibliography	

[1]	 	 ISO	24613-1,	Language	resource	management	—	Lexical	markup	framework	(LMF)	—	Part	1:	
Core	model	

[2]	 	 ISO	24617-1,	Language	resource	management	—	Semantic	annotation	framework	(SemAF)	—	
Part	1:	Time	and	events	(SemAF-Time,	ISO-TimeML)	

[3]	 	 ISO	24622-1,	Language	resource	management	—	Component	Metadata	Infrastructure	(CMDI)	—	
Part	1:	The	Component	Metadata	Model	

[4]	 	 Bański,	P.,	Frick,	E.,	and	Witt,	A.	(2016).	Corpus	query	lingua	franca	(CQLF).	In	Proceedings	of	the	
Tenth	International	Conference	on	Language	Resources	and	Evaluation	(LREC	2016),	pages	
2804–2809,	Portorož,	Slovenia.	European	Language	Resources	Association	(ELRA).	

[5]	 	 Evert,	S.	and	Hardie,	A.	(2011).	Twenty-first	century	corpus	workbench:	Updating	a	query	
architecture	for	the	new	millennium.	In	Proceedings	of	the	Corpus	Linguistics	2011	Conference,	
Birmingham,	UK.	

[6]	 	 Hitzler,	P.,	Krötzsch,	M.,	Parsia,	B.,	Patel-Schneider,	P.,	and	Rudolph,	S.	(2012).	OWL	2	Web	
Ontology	Language	Primer	(Second	Edition).	W3C	Recommendation,	11	December	2012.	(Latest	
version	available	at	http://www.w3.org/TR/owl2-primer/.)	

[7]	 	 Krause,	T.	and	Zeldes,	A.	(2016).	ANNIS3:	A	new	architecture	for	generic	corpus	query	and	
visualization.	Digital	Scholarship	in	the	Humanities	31(1):	118–139.	

[8]	 	Krötzsch,	M.,	Simancik,	F.,	and	Horrocks,	I.	(2012).	A	description	logic	primer.	arXiv:1201.4089	

[9]	 	 Patel-Schneider,	P.	F.	and	Motik.,	B.	(2012).	OWL	2	Web	Ontology	Language:	Mapping	to	RDF	
Graphs	(Second	Edition).	W3C	Recommendation,	11	December	2012.	(Latest	version	available	
at	http://www.w3.org/TR/owl2-mapping-to-rdf/.)	

[10]		 Beckett,	D.	(2014).	RDF	1,1	XML	Syntax.	W3C	Recommendation,	25	February	2014.	(Latest	
version	available	at	https://www.w3.org/TR/rdf-syntax-grammar/.)	

	

