
FCS 2 Endpoint Developer's tutorial
Version: 2016-01

Requirements
– Reference libraries: SRUServer, SRUClient, FCS-QL or your own selected FCS 2.0 and 

SRU 2.0 compatible libraries.

– Endpoint reference library: FCSSimpleEndpoint or you own from scratch.

– Translation library (optional)

Resources
– Specifications

– FCS 2.0 specification

– SRU 2.0 specification

– Maven dependencies

– Reference libraries: server, client, and endpoint (simple as well as other ones). See 

Configuration section.

Adaptation
The easiest way to get started is to adapt the FCSSimpleEndpoint.

SRUSearchEngine/SRUSearchEngineBase
By extending the SimpleEndpointSearchEngineBase, or if it suits your search engine's needs better 
the SRUSearchEngineBase directly, you adapt the behaviour to your search engine. A few notes: 

• do not override init() use doInit().

• If you need to do cleanup do not override destroy()  use doDestroy(). 

• Implementing the scan method is optional. If you want to provide custom scan behavior for 

a different index, override the doScan() method. 

• Implementing the explain method is optional. Only needed if you need to fill 

writeExtraResponseData block of the SRU response. The implementation of this method 
must be thread-safe. The SimpleEndpointSearchEngineBase implementation has a on 
request parameter only response of SRUExplainResult with diagnostics.



Initialize the search engine

 The initialization should be tailored towards your environment and needs. You need to provide the 
context (ServletContext), config (SRUServerConfig) and a query parser builder 
SRUQueryParserRegistry.Builder if you want to register additional query parsers. In addition you 
can provide parameters gathered from servlet configuration and the servlet context.

EndpointDescription
SimpleEndpointDescription is an implementtion of an endpoint description that is initialized from 
static information supplied at construction time. You will probably use the 
SimpleEndpointDescriptionParser to provide the endpoint description, but you can generate the list 
of resource info records in any way suitable to your situation. Though probably this is not the first 
behaviour you need to adapt since it supports both URL or w3 Document instantiation.

EndPointDescriptionParser
The SimpleEndpointDescriptionParser is able to do the heavy lifting for you by parsing and 
extracting the information from the endpoint description including everything needed for basic and 
required FCS 2.0 features like capabilities, supported layers and dataviews, resource enumeration 
etc. It also already provide simpe consistency checks like checking unique IDs and that the declared
capabilities and dataviews match. See Configuration section for further details.

SRUSearchResultSet
This class needs to be implemented to support your search engine's behaviour. Implement these 
methods:

writeRecord(), getResultCountPrecision(), getRecordIdentifier(), nextRecord(), 
getRecordSchemaIdentifier(), getRecordCount(), and getTotalRecordCount().

SRUScanResultSet
This class needs to be implemented to support your search engine's beahviour. Implement these 
methods:

getWhereInList(), getNumberOfRecords(), getDisplayTerm(), getValue(), and getNextTerm()

SRUExplainResult
This class needs to be implemented to support your search engine's data source.

Code examples
In this section the most probable classes or methods to override or implement are walked through 
with code examples from one or more of the reference implementations.



if (request.isQueryType(Constants.FCS_QUERY_TYPE_FCS)) {
            /*
             * Got a FCS query (SRU 2.0).
             * Translate to a proper Lucene query
             */
            final FCSQueryParser.FCSQuery q =
                    request.getQuery(FCSQueryParser.FCSQuery.class);
            query = makeSpanQueryFromFCS(q);

request.isQueryType(Constants.FCS_QUERY_TYPE_FCS)) {
            /*
             * Got a FCS query (SRU 2.0).
             * Translate to a proper CQP query
             */
            final FCSQueryParser.FCSQuery q =
                    request.getQuery(FCSQueryParser.FCSQuery.class);
            query = makeCQPQueryFromFCS(q);

   private SpanQuery makeSpanQueryFromFCS(FCSQueryParser.FCSQuery query)
            throws SRUException {
        QueryNode tree = query.getParsedQuery();
        logger.debug("FCS-Query: {}", tree.toString());

        // crude query translator
        if (tree instanceof QuerySegment) {
            QuerySegment segment = (QuerySegment) tree;
            if ((segment.getMinOccurs() == 1) && (segment.getMaxOccurs() == 1)) 
{
                QueryNode child = segment.getExpression();
                if (child instanceof Expression) {
                    Expression expression = (Expression) child;
                    if (expression.getLayerIdentifier().equals("text") &&
                            (expression.getLayerQualifier() == null) &&
                            (expression.getOperator() == Operator.EQUALS) &&
                            (expression.getRegexFlags() == null)) {

                        return new SpanTermQuery(new Term("text",
                                expression.getRegexValue().toLowerCase()));
                    } else {
                        throw new SRUException(
                                
Constants.FCS_DIAGNOSTIC_GENERAL_QUERY_TOO_COMPLEX_CANNOT_PERFORM_QUERY,
                                "Endpoint only supports 'text' layer, the '=' 
operator and no regex flags");
                    }
                } else {
                    throw new SRUException(
                            
Constants.FCS_DIAGNOSTIC_GENERAL_QUERY_TOO_COMPLEX_CANNOT_PERFORM_QUERY,
                            "Endpoint only supports simple expressions");
                }
            } else {
                throw new SRUException(
                        
Constants.FCS_DIAGNOSTIC_GENERAL_QUERY_TOO_COMPLEX_CANNOT_PERFORM_QUERY,
                        "Endpoint only supports default occurances in 
segments");
            }
        } else {
            throw new SRUException(
                    
Constants.FCS_DIAGNOSTIC_GENERAL_QUERY_TOO_COMPLEX_CANNOT_PERFORM_QUERY,
                    "Endpoint only supports single segment queries");
        }



    }

@Override
    public void writeRecord(XMLStreamWriter writer) throws XMLStreamException {
        XMLStreamWriterHelper.writeStartResource(writer, idno, null);
        XMLStreamWriterHelper.writeStartResourceFragment(writer, null, null);

        /*
         * NOTE: use only AdvancedDataViewWriter, even if we are only doing
         * legacy/simple FCS.
         * The AdvancedDataViewWriter instance could also be
         * reused, by calling reset(), if it was used in a smarter fashion.
         */
        AdvancedDataViewWriter helper =
                new AdvancedDataViewWriter(AdvancedDataViewWriter.Unit.ITEM);
        URI layerId = URI.create("http://endpoint.example.org/Layers/orth1");
        String[] words;

        long start = 1;
        if ((left != null) && !left.isEmpty()) {
            words = left.split("\\s+");
            for (int i = 0; i < words.length; i++) {
                long end = start + words[i].length();
                helper.addSpan(layerId, start, end, words[i]);
                start = end + 1;
            }
        }

        words = keyword.split("\\s+");
        for (int i = 0; i < words.length; i++) {
            long end = start + words[i].length();
            helper.addSpan(layerId, start, end, words[i], 1);
            start = end + 1;
        }

        if ((right != null) && !right.isEmpty()) {
            words = right.split("\\s+");
            for (int i = 0; i < words.length; i++) {
                long end = start + words[i].length();
                helper.addSpan(layerId, start, end, words[i]);
                start = end + 1;
            }
        }
        helper.writeHitsDataView(writer, layerId);
        if (advancedFCS) {

            helper.writeAdvancedDataView(writer);
        }
        XMLStreamWriterHelper.writeEndResourceFragment(writer);
        XMLStreamWriterHelper.writeEndResource(writer);
    }

Configuration

Maven
To include FCSSimpleEndpoint these are the dependencies:

<dependencies>
    <dependency>
      <groupId>eu.clarin.sru.fcs</groupId>
      <artifactId>fcs-simple-endpoint</artifactId>



      <version>1.3.0</version>
    </dependency>
    <dependency>
      <groupId>javax.servlet</groupId>
      <artifactId>servlet-api</artifactId>
      <version>2.5</version>
      <type>jar</type>
      <scope>provided</scope>
    </dependency>
  </dependencies>

The version is currently 1.4-SNAPSHOT if you want and enable the Clarin snapshots repository.

Endpoint

To enable SRU 2.0 which is required for FCS 2.0 functionality you need to provide the following 
initialization parameters to the servlet context:

<init-param>
    <param-name>eu.clarin.sru.server.sruSupportedVersionMax</param-name>
    <param-value>2.0</param-value>
</init-param>

<init-param>
    <param-name>eu.clarin.sru.server.legacyNamespaceMode</param-name>
    <param-value>loc</param-value>
</init-param>

The endpoint configurations consists of the already mentionend context (ServletContext), a config 
(SRUServerConfig) and if you want further query parsers (SRUQueryParserRegistry.Builder). Also 
additional parameters gathered from servlet configuration and the servlet context are available.

EndPointDescriptionParser

You probably start out using the provided EndPointdescriptionParser. It will parse and make 
available what is required and also do some sanity checkning. 

• Capabilities, basic search capability is required and advanced is available for FCS 2.0, 

checks that any given capability is encoded as a proper URI and that the IDs are unique.

• Supported Data views, checks  that <SupportedDataView> elements have:

◦  a proper @id attribute and that the value is unique. 

◦ a @delivery-policy attribute, eg DeliveryPolicy.SEND_BY_DEFAULT, 

DeliveryPolicy.NEED_TO_REQUEST.

◦ a child text node with a MIME-type as its content, eg for basics search (hits): 

application/x-clarin-fcs-hits+xml and for advanced search: application/x-clarin-fcs-
adv+xml

Sample: <SupportedDataView id="adv" delivery-policy="send-by-
default">application/x-clarin-fcs-adv+xml</SupportedDataView>

Makes sure capabilities and declared dataviews actually match otherwise it will warn you.

• Supported Layers, checks that <SupportedLayer> elements have:



◦ a proper @id attribute and that the value is unique.

◦ a proper @result-id attribute and that is is encoded as a proper URI, ant that the child 

text node is "text", "lemma", "pos", "orth", "norm", "phonetic", or other value starting 
with "x-".

◦ if a @alt-value-info-uri attribute that is encoded as proper URI, eg tag description

◦ if Advanced search is given in capabilities that it is also available.

• Resources, checks that some resources are actually defined, and have:

◦ a proper @xml:lang attribute on its Description elelement.

◦ a  child LandingPageURI element

◦  a child Language element and that is must use ISO-639-3 three letter language codes

Translation library

For the current version of the translation library a mapping for UD-17 to your used word classes for 
the word class layer is needed. It currently also does X-SAMPA conversion for the phonetic layer.  
The mappings are specified in one configuration file, an XML document. This will mostly be 1-to-
1, but might require lossy translation either way. To guide you in this we walk through 
configuration and mapping examples from the reference implemetations.

Part-of-Speech (PoS)

The PoS translation configuration is expressed in a TranslationTable element with the attributes 
@fromResourceLayer, @toResourceLayer and @translationType:

    ...<TranslationTable fromResourceLayer="FCSAggregator/PoS" toResourceLayer="Korp/PoS" 
translationType="replaceWhole">...

@translationType is currently a closed set of two values, but could be extended by any definition on
how to replace something in to. The values are replaceWhole and replaceSegments, but 
replaceSegments require further defintions of trellis segment translations which will not be 
addressed by this tutorial.

The values of @fromResourceLayer and @toResourceLayer only depends on these being declared 
by ResourceLayer elements under /AnnotationTranslation/Resources:

<ResourceLayer resource="FCSAggregator" layer="phonetic" formalism="X-SAMPA" />

The attributes of ResourceLayer are @resource, @layer and @formalism. The value of @layer is 
(most easily) the identifier which is used for the layer in the FCS 2.0 specification. @formalism is 
(most easily) the namespace value prefix or an URI. E g for PoS this can be SUC-PoS for the 
already mentionend SUC PoS tagset, CGN or UD-17. These tag sets often also includes 
morphosyntactic descriptions MSD in its original form, but since MSD is not part of the FCS 2.0 
specification we are only dealing with the PoS tags here.



Going from UD-17's VERB tag to Stockholm Umeå Corpus (SUC) Part-of-Speech you get two tags 
VB and PC:

      <Pair from="VERB"   to="VB" />

      <Pair from="VERB"   to="PC" />

Adding the translation of the UD-17 AUX tag which gives VB in SUC-PoS too, but this is a 1-to-1 
translation this way. 

      <Pair from="AUX"    to="VB" />

As you can see from this the precision is varying and could become too bad to be useful going both 
ways from the FCSAggregator to the endpoint and then back. For this you can use the available 
alerting methods given in the FCS 2.0 specification.

With non-1-to-1 translations you need to know how alternatives are expressed in the endpoints 
query language. This is where the not yet available conversion library would use the translation 
library adding rule-based knowledge on how to translate to eg CQP [pos = “VB” | pos = “PC”] 

Other resources
http://clarin.ids-mannheim.de/downloads/clarin/DigiBibSRU-source-2016-02-08.zip

https://clarin.ids-mannheim.de/digibibsru-new

Korp Endpoint

https://clarin.ids-mannheim.de/digibibsru-new
http://clarin.ids-mannheim.de/downloads/clarin/DigiBibSRU-source-2016-02-08.zip

	Requirements
	Resources
	Adaptation
	SRUSearchEngine/SRUSearchEngineBase
	Initialize the search engine

	EndpointDescription
	EndPointDescriptionParser
	SRUSearchResultSet
	SRUScanResultSet
	SRUExplainResult

	Code examples
	Configuration
	Maven
	Endpoint
	EndPointDescriptionParser

	Translation library
	Part-of-Speech (PoS)


	Other resources


